[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] \[=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{i j}{\mathrm{gcd}(i, j)}\] \[=\sum_{g=1}^{n} \sum_{i=1}^{n/g} \s…
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ \prod_{d=1}^n \prod_{i=1}^{\frac{n}{d}}\prod_{i=1}^{\frac{m}{d}} f[d]^{[(i,j)=1]} \] 套路一直推完 \[ \prod_{D=1}^n \prod_{d|D} f[d]^{\mu(\frac{D}{d}) \cdot…
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x,y) N,M<=10000000T<=10000N,M <= 10000000\newline T<= 10000N,M<=10000000T<=10000 题目分析 直接开始变换,假设N<M Ans=∑x=1N∑y=1Mxy(x,y)=∑T=1N1T∑x=1N∑y=…
2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Description\) 用\(f[i]\)表示\(Fibonacci\)数列的第\(i\)项,求\[\prod_{i=1}^n\prod_{j=1}^mf[\gcd(i,j)]\mod (10^9+7)\] \(Solution\) \[ \begin{aligned} Ans &=\prod_{i=1}^n\pr…
大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) fo…
题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i, j的最大公约数.Doris的表格中共有n×m个数,她想知道这些数的乘积是多少.答案对10^9+7取模. 输入 有多组测试数据. 第一个一个数T,表示数据组数. 接下来T行,每行两个数n,m T<=100…
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i=1}^N \prod\limits_{j=1}^M f[gcd(i,j)] & = \prod\limits_{d=1}^N f[d]^{\sum\limits_{i=1}^\frac{N}{d} \sum\limits_{j=1}^\frac{M}{d}[gcd(i,j)==1]} \\ &…
link 设\(f_0=0,f_1=1,f_n=f_{n-1}+f_{n-2}(n\ge 2)\) 求\(\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)}\),多组询问,\(T\le1000,n,m\le10^6\) 推导过程稍微有点难,因为有prod而不是清一色的sum了 不过总体还是不难的 \(\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)}\) \(=\prod_{p=1}^nf_p^{\sum_{i=1}^n\sum_{j=1}…
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i,j)=d} i*j $ 令$f(p)=Sum(\lfloor n/p \rfloor) Sum(\lfloor m/p \rfloor) * p^2$ 那么 $f(i)=\sum_{i \mid n}F(n)$ 反演得到$F(i)=\sum_{i \mid n} \mu(n/i) f(n)$ 那么我们代入…