CS229 6.18 CNN 的反向传导算法】的更多相关文章

本文主要内容是 CNN 的 BP 算法,看此文章前请保证对CNN有初步认识. 网络表示 CNN相对于传统的全连接DNN来说增加了卷积层与池化层,典型的卷积神经网络中(比如LeNet-5 ),开始几层都是卷积和池化的交替,然后在靠近输出的地方做成全连接网络,这时候已经将所有两维2D的特征maps转化为全连接的一维网络的输入.在前向传导或城中中,也只有两处与传统的 MLP 有所不同,分别是卷积层前向传导,与 pooling 传导到卷积层,如下图所示: 在上图中,层 (l−1)(l−1) 可以为poo…
本文主要内容是 CNN 的 BP 算法,看此文章前请保证对CNN有初步认识,可参考Neurons Networks convolutional neural network(cnn). 网络表示 CNN相对于传统的全连接DNN来说增加了卷积层与池化层,典型的卷积神经网络中(比如LeNet-5 ),开始几层都是卷积和池化的交替,然后在靠近输出的地方做成全连接网络,这时候已经将所有两维2D的特征maps转化为全连接的一维网络的输入.在前向传导或城中中,也只有两处与传统的 MLP 有所不同,分别是卷积…
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套教程,内容深入浅出,有很强的实用性,学习起来,让人有种酣畅淋漓的感觉.邓侃博士于今年 2 月 20 日起,在新浪微博上召集志愿者对该教程进行翻译,并于 4 月 8 日全部完成,非常感谢所有参与者的辛勤劳动.本系列文章主要是对这套教程资料的整理,部分内容加入了自己的一些理解和注释. 第一篇  稀疏自编…
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度神经网络(DNN)反向传播算法(BP) 1. 回顾DNN的反向传播算法 我们首先回顾DNN的反向传播算法.在DNN中,我们是首先计算出输出层的$\delta^L$:$$\delta^L = \frac{\partial J(W,b)}{\partial z^L} = \frac{\partial J…
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用Softmax激活函数的输出层.这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构.图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我…
假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们可以定义整体代价函数为: 以上公式中的第一项 是一个均方差项.第二项是一个规则化项(也叫权重衰减项),其目的是减小权重的幅度,防止过度拟合. [注:通常权重衰减的计算并不使用偏置项 ,比如我们在 的定义中就没有使用.一般来说,将偏置项包含在权重衰减项中只会对最终的神经网络产生很小的影响.在贝叶斯规则…
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 Tricks!这是一个让人听了充满神秘和好奇的词.对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此.曾记得,我们绞尽脑汁,搓手顿足,大喊“为什么我跑的模型不work?”,“为什么我实现的效果那么差?”,“为什么我复现的结果没有他论文里面说的那么好?”.有人会和你说“你不懂调参!里面有…
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不…
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定的规则相互连接在一起形成神经网络,从而奇迹般的获得了强大的学习能力.我们还将介绍这种网络的训练算法:反向传播算法.最后,我们依然用代码实现一个神经网络.如果您能坚持到本文的结尾,将会看到我们用自己实现的神经网络去识别手写数字.现在请做好准备,您即将双手触及到深度学习的大门. 神经元 神经元和感知器本…
在一般的全联接神经网络中,我们通过反向传播算法计算参数的导数.BP 算法本质上可以认为是链式法则在矩阵求导上的运用.但 CNN 中的卷积操作则不再是全联接的形式,因此 CNN 的 BP 算法需要在原始的算法上稍作修改.这篇文章主要讲一下 BP 算法在卷积层和 pooling 层上的应用. 原始的 BP 算法 首先,用两个例子回顾一下原始的 BP 算法.(不熟悉 BP 可以参考How the backpropagation algorithm works,不介意的话可以看我的读书笔记) 最简单的例…