b+树的原理】的更多相关文章

在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(…
大名鼎鼎的 GBDT 算法就是用回归树组合而成的.本文就回归树的基本原理进行讲解,并手把手.肩并肩地带您实现这一算法. 1. 原理篇 1.1 最简单的模型 如果预测某个连续变量的大小,最简单的模型之一就是用平均值.比如同事的平均年龄是 28 岁,那么新来了一批同事,在不知道这些同事的任何信息的情况下,直觉上用平均值 28 来预测是比较准确的,至少比 0 岁或者 100 岁要靠谱一些.我们不妨证明一下我们的直觉: 1.2 加一点难度 仍然是预测同事年龄,这次我们预先知道了同事的职级,假设职级的范围…
如图所示,区别有以下两点: 1. B+树中只有叶子节点会带有指向记录的指针(ROWID),而B树则所有节点都带有,在内部节点出现的索引项不会再出现在叶子节点中. 2. B+树中所有叶子节点都是通过指针连接在一起,而B树不会. B树的原理: 就是为了存储设备或者磁盘设计的一种平衡查找树:通过对树高度的降低可以提升查找效率,尤其是在大量数据进行存储的时候会存储到外部磁盘,通过对外部磁盘的读取时需要快速的查找到对应的位置,所以需要一种高效的外村数据结构. B树的优点: 对于在内部节点的数据,可直接得到…
浅谈可持久化Trie与线段树的原理以及实现 引言 当我们需要保存一个数据结构不同时间的每个版本,最朴素的方法就是每个时间都创建一个独立的数据结构,单独储存. 但是这种方法不仅每次复制新的数据结构需要时间,空间上也受不了储存这么多版本的数据结构. 然而有一种叫git的工具,可以维护工程代码的各个版本,而空间上也不至于十分爆炸.怎么做到呢? 答案是版本分支,即每次创建新的版本不完全复制老的数据结构,而是在老的数据结构上加入不同版本的分支. 下面以链表为例 graph LR A-->B B-->C…
在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multipl…
前面我们了解了决策树和adaboost的决策树墩的原理和实现,在adaboost我们看到,用简单的决策树墩的效果也很不错,但是对于更多特征的样本来说,可能需要很多数量的决策树墩 或许我们可以考虑使用更加高级的弱分类器,下面我们看下CART(Classification And Regression Tree)的原理和实现吧 CART也是决策树的一种,不过是满二叉树,CART可以是强分类器,就跟决策树一样,但是我们可以指定CART的深度,使之成为比较弱的分类器 CART生成的过程和决策树类似,也是…
http://acm.hdu.edu.cn/showproblem.php?pid=3303 Harmony Forever Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 813    Accepted Submission(s): 222 Problem Description We believe that every inh…
以前就看到了这个东西,由于太忙了最近才有时间来实现这个; 该文章适合有一定 canvas 基础的人阅读; 首先说说他的原理: The construction of the Pythagoras tree begins with a square. Upon this square are constructed two squares, each scaled down by a linear factor of ½√2, such that the corners of the square…
一.MySQL索引原理 1.索引背景 生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据. 数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>.<.between.in).模糊查询(like).并集查询(or)等等.数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询…
在之前博客中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multiple Additive Regr…