原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题. 比如在下面的这个问题中: 如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类. 但如果情况变得复杂了一点呢?在上图中(图片来源),数据…
<Deep Learning>(深度学习)中文版开放下载   <Deep Learning>(深度学习)是一本皆在帮助学生和从业人员进入机器学习领域的教科书,以开源的形式免费在网络上提供, 这本书是由学界领军人物 Ian Goodfellow.Yoshua Bengio 和 Aaron Courville 合力打造. 书籍原版英文目录: Deep Learning Table of Contents Acknowledgements Notation 1 Introduction…
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或者是随机量,这与我们传统所需要解决掉问题是大不一样的,因此我们在机器学习中往往很难给出一个百分百的预测或者判断,基于此种原因,较大的可能性往往就是所要达到的目标,概率论有用武之地了. 概念 离散型 概率质量函数:是一个数值,概率,\(0\leq P(x)\leq 1\): 边缘概率分布:\(P(X=x)=\s…
catalogue . 引言 . 感知器及激活函数 . 代价函数(loss function) . 用梯度下降法来学习-Learning with gradient descent . 用反向传播调整神经网络中逐层所有神经元的超参数 . 过拟合问题 . IMPLEMENTING A NEURAL NETWORK FROM SCRATCH IN PYTHON – AN INTRODUCTION 0. 引言 0x1: 神经网络的分层神经元意味着什么 为了解释这个问题,我们先从一个我们熟悉的场景开始说…
知识点 1. Relu(Rectified Liner Uints 整流线性单元)激活函数:max(0,z) 神经网络中常用ReLU激活函数,与机器学习课程里面提到的sigmoid激活函数相比有以下优点: 1.simoid激活函数具有饱和性,通常不适用simoid作为激活函数 2.ReLU的收敛速度更快 2.常见监督学习应用场景 3.结构化数据与非结构化数据 结构化数据,结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据.一般特点是:数据以行为单位,一行数据表示一个实体的信息,…
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题.比如在下面的这个问题中:如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类.但如果情况变得复杂了一点呢?在上图中(图片来源),数据就变成了…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上非常大牛和机器学习专家所无私奉献的资料的.详细引用的资料请看參考文献.详细的版本号声明也參考原文献. 2)本文仅供学术交流,非商用.所以每一部分详细的參考资料并没有详细相应.假设某部分不小心侵犯了大家的利益,还望海涵,并联系博主删…
Deep Learning论文笔记之(一)K-means特征学习 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…