网络KPI异常检测之时序分解算法】的更多相关文章

时间序列数据伴随着我们的生活和工作.从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标.时间序列中的规律能加深我们对事物和场景的认识,时间序列中的异常能提醒我们某些部分可能出现问题.那么如何去发现时间序列中的规律.找出其中的异常点呢?接下来,我们将揭开这些问题的面纱. 什么是异常 直观上讲,异常就是现实与心理预期产生较大差距的特殊情形.如2020年春节的新型肺炎(COVID-19,coronavirus disease 2019)…
AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com   作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监督方法对海量KPI进行异常检测是我们在智能运维领域探索的方向之一.最近学习了清华裴丹团队发表在WWW 2018会议上提出利用VAE模型进行周期性KPI无监督异常检测的论文:<Unsupervised Anomaly Detection via Variational Auto-Encoder for…
在上篇博文中介绍了网络服务异常检测的大概,本篇将详细介绍SVDD和Isolation Forest这两种算法 1. SVDD算法 SVDD的英文全称是Support Vector Data Description,又称为支持向量数据描述,它是由Tax和Duin提出的一种单分类算法,它起源于V.VapniH的支持向量机.它计算围绕具有一组最小体积的球形决策边界对象,可以用于新奇检测或异常检测,检测从给定数据集中偏离的对象.通过使用不同的内核,SVDD可以获得更灵活和更准确的数据描述,通过区分由训练…
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章中分类和回归都属于监督学习.当目标值是未知时,需要使用非监督学习,非监督学习不会学习如何预测目标值.但是,它可以学习数据的结构并找出相似输入的群组,或者学习哪些输入类型可能出现,哪些类型不可能出现. 5.1 异常检测 异常检测常用于检测欺诈.网络攻击.服务器及传感设备故障.在这些应用中,我们要能够找…
基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans和随机森林算法对网络服务数据进行分析:数据分为全量数据和正常数据,每天通过自动跑定时job从全量数据中导入正常数据供算法做模型训练. 使用celery批量导入(指定时间段)正常样本到数据库 def add_normal_cat_data(data): """ 构建数据model…
代码如下,测试发现,是否对输入数据进行归一化/标准化对于结果没有影响: import numpy as np from sklearn.ensemble import IsolationForest from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler def parse_line(s): s = s.replace("u'", "&quo…
1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关系模式 以交通量计算的交通高峰期的模式 心跳的模式 股票市场和某些产品的销售周期 数据需要有较强的稳定性,例如”预测商店营业额“和"预测打车订单"的稳定性就比"预测某台服务器何时处于被入侵的异常状态"要强.从形成机制上讲,商店营业额和打车订单是由人的行为驱动的,风是由自…
以下我为这篇<Rapid Deployment of Anomaly Detection Models for Large Number of Emerging KPI Streams>做的阅读笔记 - Jeanva Abstract Rapid deployment of anomaly detection models for large number of emerging KPI streams, without manual algorithm selection, paramete…
EDADS系统包含了众多的时序模型和异常检测模型,这些模型的处理会输入很多参数,若仅使用默认的参数,那么时序模型预测的准确率将无法提高,异常检测模型的误报率也无法降低,甚至针对某些时间序列这些模型将无法使用. 若想有效地使用EGADS系统,那么必须了解EGADS系统的核心算法思想,并据此调优模型参数,来提高异常检测的准确率.降低误报率. 笔者通过阅读EDADS系统的TimeSeries模型和AnomalyDetection模型的源码,整理了模型的处理流程和常用算法的核心思想.如本文有理解错误之处…
实验了效果,下面的还是图像的异常检测居多. https://github.com/LeeDoYup/AnoGAN https://github.com/tkwoo/anogan-keras 看了下,本质上是半监督学习,一开始是有分类模型的.代码如下,生产模型和判别模型: ### generator model define def generator_model(): inputs = Input((10,)) fc1 = Dense(input_dim=10, units=128*7*7)(i…