作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. BP Neural Network - 使用 Automatic Differentiation (Backpropagation) 进行导数计算的层级图模型 (layer-by-layer graphical model) 只要模型是一层一层的,并使用AD/BP算法,就能称作 BP Ne…
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统输出. 本章拟合的非线性函数为\[y = {x_1}^2 + {x_2}^2\]该函数的图形如下图所示. t=-5:0.1:5; [x1,x2] =meshgrid(t); y=x1.^2+x2.^2; s…
一.神经元 神经元模型是一个包含输入,输出与计算功能的模型.(多个输入对应一个输出) 一个神经网络的训练算法就是让权重(通常用w表示)的值调整到最佳,以使得整个网络的预测效果最好. 事实上,在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元.这些节点是默认存在的.它本质上是一个只含有存储功能,且存储值永远为1的单元. 输入:x1.x2和截距+1 输出:y 其中的激活函数包括: 逻辑回归函数(S函数): 双曲正切函数(双S函数): 二.神经网络的层次 神经网络中,除了输入层.输出层,…
一.BP神经网络的概念     BP神经网络是一种多层的前馈神经网络,其基本的特点是:信号是前向传播的,而误差是反向传播的.详细来说.对于例如以下的仅仅含一个隐层的神经网络模型: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZ29vZ2xlMTk4OTAxMDI=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" /…
这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知识.下面是一些笔记概要. 一. 神经网络 神经网络我之前听过无数次,但是没有正儿八经研究过.形象一点来说,神经网络就是人们模仿生物神经元去搭建的一个系统.人们创建它也是为了能解决一些其他方法难以解决的问题. 对于单一的神经元而言,当生物刺激强度达到一定程度,其就会被激发,然后做出一系列的反应.模仿这…
1.1 案例背景 1.1.1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播.在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响下一层神经元状态.如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阔值,从而使BP神经网络预测输出不断逼近期望输出.当输入节点数为$n$.输出节点数为$m$时, BP 神经网络就表达了从$n$个自变量到$m$个因变量的函数映射关系. BP 神经网络预测前首先要训练网…
一.人工神经网络 关于对神经网络的介绍和应用,请看如下文章 ​ 神经网络潜讲 ​ 如何简单形象又有趣地讲解神经网络是什么 二.人工神经网络分类 按照连接方式--前向神经网络.反馈(递归)神经网络 按照学习方式--有导师学习神经网络.无导师学习神经网络 按照实现功能--拟合(回归)神经网络.分类神经网络 三.BP神经网络概述 1. 特点 BP神经网络中 BP 是指 BackPropagation (反向传播) ,指的是误差的反向传播 ,其信号是向前传播的 , 从结构上分类 ,它是前向有导师学习神经…
本文学习笔记是自己的理解,如有错误的地方,请大家指正批评.共同进步.谢谢! 之前的教学质量评价,仅仅是通过对教学指标的简单处理.如求平均值或人为的给出各指标的权值来加权求和,其评价结果带有非常大主观性.利用BP神经网络建立教学质量评价系统的模型,通过调查分析得到教学评价指标.将其标量化成确定的数据作为其输入,用BP神经网络训练后作为实际输出,将之前得到的教学效果作为期望输出.比較期望输出与实际输出的误差.当误差达到期望的最小值时,觉得训练成功. 训练成功后能够得到比較准确的权值和阈值.用训练成功…
 BP神经网络基本原理 BP神经网络是一种单向传播的多层前向网络,具有三层或多层以上的神经网络结构,其中包含输入层.隐含层和输出层的三层网络应用最为普遍. 网络中的上下层之间实现全连接,而每层神经元之间无连接.当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入相应.然后,随着减小目标输出与实际误差的方向,从输出层经过各中间层修正各连接权值,最后回到输入层. BP算法是在建立在梯度下降基础上的,BP算法的知道思想是对网络权值与阈值的修正,使误…
转自博客园@编程De: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html  http://blog.sina.com.cn/s/blog_88f0497e0102v79c.html 从神经网络的生物模型说起 我们知道人大脑信息的传递.对外界刺激产生反应都由神经元控制的,人脑就是由上百亿个的这样神经元构成.这些神经元之间并不孤立而且联系很密切,每个神经元平均与几千个神经元相连接,因此构成了人脑的神经网络.刺激在神经网络中的传播是遵循一…
引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tensorflow编程常用的一些方法. 正文 神经网络的内容 一般,一个神经网络程序包含以下几部分内容. 1.数据表达和特征提取.对于一个非深度学习神经网络,主要影响其模型准确度的因素就是数据表达和特征提取.同样的一组数据,在欧式空间和非欧空间,就会有着不同的分布.有时候换一种思考问题的思路就会使得问题变…
用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络. BP神经网络 全部代码 https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py 神经网络model 先介绍个三层的神经网络,如下图所示 输入层(input layer)有三个units( 为补上的bias,通常设为1) 表示第j层的第i个…
转载:http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html BP 神经网络中的 BP 为 Back  Propagation 的简写,最早它是由Rumelhart.McCelland等科学家于 1986 年提出来的,Rumelhart 并在Nature 上发表了一篇非常著名的文章 <Learning representations by back-propagating errors> .随着时代的迁移,BP神经网络理论不断的得到改进…
一.感知机 1.感知机的概念 感知机是用于二分类的线性分类模型,其输入是实例的特征向量,输出是实例的类别,类别取+1和-1二个值,+1代表正类,-1代表负类.感知机对应于输入空间(特征空间)中将实例分为正负两类的分割超平面,属于判别模型.感知机学习算法简单易于实现,分为原始形式和对偶形式. 2.感知机的原理 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练数据集正实例点和负实例…
BP神经网络概念 BP神经网络的计算过程: 由正向计算过程和反向计算过程组成: 正向计算过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态.如果在输出层不能得到期望的输出,则转入反向计算,将误差信号沿原来的连接通路返回,通过修改各神经元的权值,使得误差信号最小: 1.正向计算 2.反向计算 误差传递 采用矩阵就算反向传递的误差:  权重更新 为了使网络计算的输出值与实际值趋近,需要一个衡量标准,该标准就是这个误差值,而计算输出值是权重决定的,所以需…
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个…
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的測试数据集.Iris数据集能够在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现须要对其进行分类.不同品种的Iris花的花萼长度.花萼…
1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈网络.本文只介绍BP神经网络工具箱. 2.BP神经网络工具箱介绍 BP神经网络学习规则是不断地调整神经网络的权值和偏值,使得网络输出的均方误差和最小.下面是关于一些BP神经网络的创建和训练的名称: (1)newff:创建一前馈BP网络(隐含层只有一层) (2)newcf:创建一多层前馈BP网络(隐含…
人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: 按照实现功能,可以分为:拟合(回归)神经网络 vs. 分类神经网络. 数据归一化:将数据映射到[0, 1]或[-1, 1]区间或其他的区间. 数据归一化的原因: 1.输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢.训练时间长.2.数据范围大的输入在模式分类中的作用可能会偏…
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法. 具体步骤   这里以一个普遍实用的简单案例为例子进行编程的说明. 假设一组x1,x2,x3的值对应一个y值,有2000组这样的数字,我们选择其中1900组x1,x2,x3和y作为样本,其余100组x1,x2,x3作为测试数据来验证.   首先需要读取这些数据,并把数据赋值给input 和 output . 我是把数据…
基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural net fitting textread使用方法:http://blog.sina.com.cn/s/blog_9e67285801010bju.html ex1. clear; clc; %注意P矩阵,matlab默认将一列作为一个输入 P=[0.5152 0.8173 1.0000 ; 0.8173…
工序工时由该工序的工艺参数决定,有了工时后乘以固定因子就是计件工资.一般参考本地小时工资以及同类小时工资并考虑作业的风险等因素给出固定因子 采用的VS2010 , Matlab2015a 64,  开发端是win7 64 , 部署端是win2012 R2 Datacenter 64 Matlab部分 下面是样本数据: 注意样本数据要尽可能全面,比方这里会交换L与R后做为另一组样本数据一起交给系统训练 打钩的数据会抽取来训练,WTime是目标,所以5个输入1个输出. 训练代码 clc clear…
BP神经网络介绍 神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理.在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元.输出单元和隐含单元. 顾名思义:输入单元接受外部给的信号与数据:输出单元实现系统处理结果的输出:隐含单元处在输入和输出单元之间,从网络系统外部是无法观测到隐含单元的结构的.除了上述三个处理信息的单元之外,神经元间的连接强度大小由权值等参数来决定. 图为BP神经网络结构:(图片均为截图来的笔记,蒟蒻手动狗头) 单个神经元的工作…
1.使用误差反向传播(error back propagation )的网络就叫BP神经网络 2.BP网络的特点: 1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接 . 2)BP网络的传递函数必须可微.BP网络一般使用Sigmoid函数或线性函数作为传递函数.  在输出层使用Sigmoid函数会把输出限定在一个较小的范围内,经典方法是隐藏层用Sigmoid函数,输出层用线性函数 3)BP网络采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP…
% 生成训练样本集 clear all; clc; P=[110 0.807 240 0.2 15 1 18 2 1.5; 110 2.865 240 0.1 15 2 12 1 2; 110 2.59 240 0.1 12 4 24 1 1.5; 220 0.6 240 0.3 12 3 18 2 1; 220 3 240 0.3 25 3 21 1 1.5; 110 1.562 240 0.3 15 3 18 1 1.5; 110 0.547 240 0.3 15 1 9 2 1.5]; 0…
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经网络.我们的第二话就从BP神经网络开始漫谈吧. BP的来源 “时势造英雄”,一个伟大的人物的登场总是建立在历史的需求之下,所以我们剖析一个人,得先看看他的出身时代.同样的道理,在讲BP网络的特性和用途之前,我们需要先了解一下它的来源和诞生原因,以便理解它的重要性. 1.1 最简单的神经网络结构——感…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
1.具体应用实例.根据表2,预测序号15的跳高成绩. 表2 国内男子跳高运动员各项素质指标 序号 跳高成绩() 30行进跑(s) 立定三级跳远() 助跑摸高() 助跑4—6步跳高() 负重深蹲杠铃() 杠铃半蹲系数 100 (s) 抓举 () 1 2.24 3.2 9.6 3.45 2.15 140 2.8 11.0 50 2 2.33 3.2 10.3 3.75 2.2 120 3.4 10.9 70 3 2.24 3.0 9.0 3.5 2.2 140 3.5 11.4 50 4 2.32…
为了看懂师兄的文章中使用的方法,研究了一下神经网络 昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,百度知道里倒是有一个,可以运行的,先贴着做标本 % 生成训练样本集 clear all; clc; P=[110 0.807 240 0.2 15 1 18 2 1.5; 110 2.865 240 0.1 15 2 12 1 2; 110 2.59 240 0.1 12 4 24 1 1.5; 220 0.6 240 0.3 12 3 18 2 1; 220 3 240 0.3 25…
秒懂神经网络---BP神经网络具体应用不能说的秘密 一.总结 一句话总结: 还是要上课和自己找书找博客学习相结合,这样学习效果才好,不能单视频,也不能单书 BP神经网络就是反向传播神经网络 1.BP神经网络是什么? 反向传播神经网络:通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出. BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出.它是一种应用…