周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine(下载链接:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.56…
csdn上面有一篇ppt,但是下载分太贵了.里面东西看起来讲的还可以.看看能不能嵌入. http://download.csdn.net/detail/u012289698/9371461 <iframe width='738' height='523' class='preview-iframe' scrolling='no' frameborder='0' src='http://download.csdn.net/source/preview/9371461/0ea8ecff421fae4…
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑回归模型,这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的…
转载自:http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.L…
今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问题,具体的话下面一起来看下吧. 原文:Deepfm: a factorization-machine based neural network for ctr prediction 地址:http://www.ijcai.org/proceedings/2017/0239.pdf 1.问题由来 1.1.背景…
本系列的第六篇,一起读论文~ 本人才疏学浅,不足之处欢迎大家指出和交流. 今天要分享的是另一个Deep模型NFM(串行结构).NFM也是用FM+DNN来对问题建模的,相比于之前提到的Wide&Deep(Google).DeepFM(华为+哈工大).PNN(上交)和之后会分享的的DCN(Google).DIN(阿里)等,NFM有什么优点呢,下面就走进模型我们一起来看看吧. 原文:Neural Factorization Machines for Sparse Predictive Analytic…
问题描述 ctr的全称是click through rate,就是预估用户的点击率,可以用于推荐系统的ranking阶段.ctr预估可以理解为给用户的特征.item的特征以及context的特征(比如日期,时间等),然后计算出user item pair的点击率. 问题定义 P(Y=1|X_{user},X_{item},X_{context}) 就是计算上面的概率. 模型梳理 LR.SVM等线性模型 线性模型的特点是将用户特征,Item特征以及Context特征做一些预处理,然后concat后…
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张伟楠博士在携程深度学习Meetup[1]上分享了Talk<Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction in Display Ads>.他在2016 ECIR发表…
众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有一定的内在关联性.比如,图像中会有大量的像素与周围的像素比较类似:文本数据中语言会受到语法规则的限制.CNN对于空间特征有很好的学习能力,正如RNN对于时序特征有强大的表示能力一样,因此CNN和RNN在上述领域各领风骚好多年. 在Web-scale的搜索.推荐和广告系统中,特征数据具有高维.稀疏.多…