思路: 前两题题面相同,代码也相同,就只贴一题的题面了.这三题的意思都是求A^X==B(mod P),P可以不是素数,EXBSGS板子题. SPOJ3105题目链接:https://www.spoj.com/problems/MOD/ POJ3243题目链接:http://poj.org/problem?id=3243 题目: 代码实现如下: #include <set> #include <map> #include <queue> #include <stac…
传送门 关于exbsgs是个什么东东可以去看看yyb大佬的博客->这里 //minamoto #include<iostream> #include<cstdio> #include<cmath> #include<map> #define ll long long #define GG {puts("No Solution");} using namespace std; #define getc() (p1==p2&&a…
[SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set…
「SPOJ 3105」Power Modulo Inverted 传送门 题目大意: 求关于 \(x\) 的方程 \[a^x \equiv b \;(\mathrm{mod}\; p) \] 的最小自然数解,不保证 \(a,p\) 互质 如果保证 \(a,p\) 互质,那么可以直接使用 \(\texttt{BSGS}\) 算法通过本题. 对于这道题目,我们考虑将式子变形 令 \(t=\gcd(a,p)\),则有 \[\frac{a}{t}a^{x-1} \equiv \frac{b}{t} \;…
[BZOJ1467/2480]Pku3243 clever Y/Spoj3105 Mod Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input     每个测试文件中最多包含100组测试数据.     每组数据中,每行包含3个正整数a,p,b.     当a=p=b=0时,表示测试数据读入完全. Output     对于每组数据,输出一行.     如果无解,输出“No Solution”(不含引号),否则输出最小自然数解. Sample Inp…
Clever Y Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8666   Accepted: 2155 Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, Y, Z, we all know how to figure out K fast. However, give…
BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. 由于费马小定理 \(x^{p-1} \equiv 1 \pmod p\) 当 \(p\) 为质数,则要是暴力的话只需要枚举到 \(p-1\) 即可. 假设 \(x=it-j\),其中 \(t= \lceil \sqrt p \rceil,j \in [0,t]\),方程变为 \(a^{it-j}…
1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小Y发现,数学中有一个很有趣的式子: X^Y mod Z = K 给出X.Y.Z,我们都知道如何很快的计算K.但是如果给出X.Z.K,你是否知道如何快速的计算Y呢? Input 本题由多组数据(不超过20组),每组测试数据包含一行三个整数X.Z.K(0 <= X, Z, K <= 109). 输入文…
题目链接 Clever - Y 题意 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\). 解法 如题,是拓展 \(Bsgs\) 板子,部分学习内容在这里 \((Click\ here)\). 敲完板子就能获得至少 5 倍经验. 过程中疯狂 \(WA\) 所以总结需要注意的几点-- · 令 \(m = sqrt(p) + 1\) 比较保险,不然有的时候会枚举不到 · 在令 \(a\),\(p\) 互质的循环中,\(b = d\)…
1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 313  Solved: 181[Submit][Status][Discuss] Description 小Y发现,数学中有一个很有趣的式子: X^Y mod Z = K 给出X.Y.Z,我们都知道如何很快的计算K.但是如果给出X.Z.K,你是否知道如何快速的计算Y呢? Input 本题由多组数据(不超过20组),每组测试数据包含一行三个整数X.Z.K(0…