Arc082_F Sandglass】的更多相关文章

Description有一个沙漏由两个上下相通玻璃球$A$和$B$构成,这两个玻璃球都含有一定量的沙子,我们暂且假定$A,B$中位于上方的玻璃球的为$U$,下方的玻璃球为$L$,则除非$U$中没有沙子,否则每秒钟都会有$1$克沙子从$U$掉入$L$. 在第$0$个时刻,$A$中有$a$克沙子,$B$中有$X-a$克沙子(总共有$X$克沙子),且$U$为$A$,$L$为$B$(即$A$上$B$下). 在$r_1,r_2,...,r_K$这些时刻,我们将倒转整个沙漏,使得原来的$U$变成$L$,原来…
题目描述 We have a sandglass consisting of two bulbs, bulb A and bulb B. These bulbs contain some amount of sand. When we put the sandglass, either bulb A or B lies on top of the other and becomes the upper bulb. The other bulb becomes the lower bulb.The…
[链接]F - Sandglass [题意]给定沙漏A和B,分别装着a和X-a的沙子,开始时A在上B在下,每秒漏1,漏完不再漏.给定n,有n个时刻ai沙漏倒转.给定m个询问,每次询问给定初值a和时刻t,求A中沙子量. [算法]数学(函数) [题解] 先不考虑时刻,令ft(a)表示沙子初值a时,当前A中的沙子数.(x轴是初值a,y轴是沙子数num) 时刻为0时,显然是一条从0出发斜率为1的直线. 若A在上,则每过1s,整段函数都下移一个单位,碰到y=0则变成平的. 若A在下,则每过1s,整段函数都…
2017国家集训队作业[arc082d]Sandglass 题意: ​ 有一个沙漏,初始时\(A\)瓶在上方,两个瓶子的最大容量都为\(X\)克,沙子流动的速度为\(1g\)每单位时间.给出\(K\)个时间点\(r_1\sim r_K\)表示在这几个时间点,漏斗会上下翻转,无视翻转时间.给出\(Q\)个询问,每个询问两个数\(t_i,a_i\),表示若初始时\(A\)瓶有\(a_i\)克沙子,询问第\(t_i\)单位时间时,\(A\)瓶中会有多少克沙子?(\(X,t_i,r_i\leq 10^9…
Description ​ 题目链接 Description ​ 好题.题意是维护一个初始值,交替加减一段时间,有上界\(m\)和下界0(不能超过这两条界限),问对于某一种初始值,在某一个时刻时该值为多少? ​ 可以把所有询问按时间排序成一列,然后用线段树区间加减.区间min.max暴力实现,然而我不会做. ​ 实际上直接模拟即可. ​ 如果按时间增长为横坐标,按该时间的权值为纵坐标,画出对于\([0,m]\)的每一种初始值的函数图像,我们会发现,随着时间的增长,函数曲线变得原来越少,也就是图像…
Description 传送门 Solution 这题是真的666啊... 以下是本题最关键最关键的结论:如果ai<=aj,则在某个时间t,前者的A中沙子克数(记为t(ai))一定大于等于t(aj).证明显然. 假设我们目前处理到到询问为(t,a),设ri为满足ri<=t的最大值.我们要处理三个量: 1,时刻ri,在不考虑限制(即不考虑沙子数只能为[0,X]范围,它可能比X大,也可能比0小)的情况下,相对于初始时的沙子数变化c. 2,时刻ri,初始A中沙子为0情况下的沙子数down. 3,时刻…
Description 有一个沙漏由两个上下相通玻璃球A和B构成,这两个玻璃球都含有一定量的沙子,我们暂且假定AB中位于上方的玻璃球的为U,下方的玻璃球为L,则除非U中没有沙子,否则每秒钟都会有1克沙子从U掉入L. 在第0个时刻,A中有aa克沙子,B中有X−aX−a克沙子(总共有XX克沙子),且U为A,L为B(即A上B下). 在r1,r2,...,rKr1,r2,...,rK这些时刻,我们将倒转整个沙漏,使得原来的U变成L,原来的L变成U.对于翻转操作,t时刻是指从第0个时刻起经过t秒后的时刻,…
题意:有个沙漏,一开始bulb A在上,bulb B在下,A内有a数量的沙子,每一秒会向下掉落1.然后在K个时间点ri,会将沙漏倒置.然后又有m个询问,每次给a一个赋值ai,然后询问你在ti时刻,bulb A的沙子数.保证A和B的总沙子数为X. 函数ft(x)表示t时刻,初始bulb A中的沙子数为x时,当前的bulb A中的沙子数是多少. 最开始时函数恰好为f(x)=x. 然后在第一次翻转之前,函数会逐渐向下移动变为<2>的样子,然后在翻转之后,函数又会逐渐向上移动,直至变成<3>…
Description 有一个沙漏由两个上下相通玻璃球 \(A\) 和 \(B\) 构成,这两个玻璃球都含有一定量的沙子,我们暂且假定 \(AB\) 中位于上方的玻璃球的为 \(U\),下方的玻璃球为 \(L\),则除非 \(U\) 中没有沙子,否则每秒钟都会有1克沙子从 \(U\) 掉入 \(L\). 在第 \(0\) 个时刻,\(A\) 中有 \(a\) 克沙子,\(B\) 中有 \(X−a\) 克沙子(总共有 \(X\) 克沙子),且 \(U\) 为 \(A\),\(L\) 为 \(B\)…
[链接]点击打开链接 [题意] 你有一个沙漏. 沙漏里面总共有X单位的沙子. 沙漏分A,B上下两个部分. 沙漏从上半部分漏沙子到下半部分. 每个时间单位漏1单位的沙子. 一开始A部分在上面.然后在r1,r2,....rk时刻,会把沙漏翻转一下. 给你Q个询问,每个询问两个数字ti,ai; 表示一开始A部分有ai个单位的沙子,问你ti时刻,A部分有多少沙子. [题解] 我们设f[i]表示初始A部分有i个单位的沙子,t时刻A中剩余的沙子数目,并假设X=7; 我们先来模拟一下这个过程,右边的加号和减号…