LUNA16数据集(二)肺结节可视化】的更多相关文章

在检测到肺结节后,还需要可视化,这样才能为诊断服务. 我使用的项目地址为:https://github.com/wentaozhu/DeepLung 项目基于论文:DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification 该项目论文地址为:https://arxiv.org/abs/1801.09555 检测出肺结节可疑区域后,将其在原始CT图像上展示出来,原理比较简单…
摘自本人毕业论文<肺结节CT影像特征提取算法研究> 医学图像特征提取可以认为是基于图像内容提取必要特征,医学图像中需要什么特征基于研究需要,提取合适的特征.相对来说,医学图像特征提取要求更加高,因为对医生的辅助诊断起着至关重要的作用,所以需要严谨可靠的特征.肺结节CT影像特征提取也是属于医学图像特征提取领域的一个部分,有着医学图像特征提取的基本要求.既有其他医学图像特征提取的方法,也有针对肺结节的特定特征提取方法.本小节主要对一些常用的肺结节CT影像医学图像特征提取方法进行介绍,主要可以分为灰…
在(一)和(二)中简单介绍了LUNA16数据集的组成,以及肺结节的可视化,有了对数据集的基本了解后,还要对数据集进行预处理,计算机视觉中原始数据一般不会直接送入神经网络,这里也是如此. 这篇博客想写已经有好久了,迟迟没有动笔,还是因为自己看过几个版本的预处理,有些地方有些混淆,有些地方犹豫该采取哪种方法,最近思路逐渐理清,遂决定动笔. 首先说一个前提,LUNA16数据集附带了一个seg-lungs-LUNA16的文件夹,里面是所有case(此处case指一个病例,也就是一张CT图像,由好多张切片…
LUNA16,全称Lung Nodule Analysis 16,是16年推出的一个肺部结节检测数据集,旨在作为评估各种CAD(computer aid detection计算机辅助检测系统)的banchmark,因为每个CAD都是基于自己的数据集,很难比较之间的性能优劣,这时候banchmark就很重要,在此之前比较知名的数据集就是Anode09了,不过这个数据集太小,训练集只有5个病例. 目前为止,比赛已经停止结果提交,不过数据集仍然可以下载,并且在leaderboard上有各路大神团队的比…
之前的文章讲述了肺结节CT影像数据特征提取算法及基于MATLAB GUI设计的肺结节CT影像特征提取系统.本文将讲述几个主要部分的代码实现,分别是预处理.灰度特征提取.纹理特征提取.形态特征提取数据. 一.预处理部分代码 1.读取肺结节CT数据和专家标记的mask数据 function [ sData ] = read_dcm_mask( dcmPath,maskPath,Ng ) function [ sData ] = read_dcm_mask( dcmPath,maskPath,Ng )…
肺结节的特征提取在临床中有着重要应用,在上篇文章已经对肺结节的基本特征和CT影像特征提取算法有了介绍,提出了三类肺结节CT影像特征提取算法.本文重点介绍肺结节CT影像特征提取系统的功能介绍及使用,利用肺结节CT影像特征提取系统对一些数据进行特征提取,检验特征提取算法的有效性. 一.肺结节特征提取算法流程 图1 算法流程图 首先,对原始的肺部CT影像数据和放射学家标记的肺结节数据进行预处理,得到标准化的肺部CT影像数据和标记数据:然后,计算得到肺结节区域,用于后续特征提取:接着针对肺结节区域做不同…
在博客肺结节CT影像特征提取中,已经实现了肺结节的灰度.纹理和形态特征的提取.但是,对于进一步了解ROI区域像素值或者说CT值的分布来说,还存在一定的不足,不能够很好的显示ROI区域. 因此,本文将进一步对ROI区域进行处理,实现ROI区域的图形化显示.主要包含灰度直方图和ROI区域图形化. 1.1  ROI区域灰度直方图 灰度直方图是描述像素值分布的一种图形,根据灰度级各个值的像素分布比例所画出的一种直方图.这里,为了更加直观看到每个灰度级像素的个数,横轴采用灰度级,纵轴为像素个数. 根据前几…
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性.可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类. 在三个类别中,其中有一个类别和其他两个类别是线性可分的.另外.在sklearn中已内置了此数据集…
MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机视觉数据集,美国中学生手写数字.训练集6万张图片,测试集1万张图片.数字经过预处理.格式化,大小调整并居中,图片尺寸固定28x28.数据集小,训练速度快,收敛效果好. MNIST数据集,NIST数据集子集.4个文件.train-label-idx1-ubyte.gz 训练集标记文件(28881字节)…
from tensorflow.examples.tutorials.mnist import input_data 首先需要连网下载数据集: mnsit = input_data.read_data_sets(train_dir='./MNIST_DATA', one_hot=True) # 如果当前文件夹下没有 MNIST_DATA,会首先创建该文件夹,然后下载 mnist 数据集 训练集与测试集的划分: X_train, y_train = mnist.train.images, mnis…