HDFS DataNode 设计实现解析】的更多相关文章

前文分析了 NameNode,本文进一步解析 DataNode 的设计和实现要点. 文件存储 DataNode 正如其名是负责存储文件数据的节点.HDFS 中文件的存储方式是将文件按块(block)切分,默认一个 block 64MB(该大小可配置).若文件大小超过一个 block 的容量可能会被切分为多个 block,并存储在不同的 DataNode 上.若文件大小小于一个 block 的容量,则文件只有一个 block,实际占用的存储空间为文件大小容量加上一点额外的校验数据.也可以这么说一个…
前文分析了 NameNode,本文进一步解析 DataNode 的设计和实现要点. 文件存储 DataNode 正如其名是负责存储文件数据的节点.HDFS 中文件的存储方式是将文件按块(block)切分,默认一个 block 64MB(该大小可配置).若文件大小超过一个 block 的容量可能会被切分为多个 block,并存储在不同的 DataNode 上.若文件大小小于一个 block 的容量,则文件只有一个 block,实际占用的存储空间为文件大小容量加上一点额外的校验数据.也可以这么说一个…
前面对 HDFS NameNode 和 DataNode 的架构设计实现要点做了介绍,本文对 HDFS 最后一个主要构成组件 Client 做进一步解析. 流式读取 HDFS Client 为客户端应用提供一种流式读取模型,就像访问本机文件系统一样来访问 HDFS.将复杂的分布式文件系统读取细节隐藏,简化了上层应用的使用难度.写过读取本机文件的程序员想必都很熟悉流式读取的编程模型,就不多说了. 错误处理 相比读取本机文件系统,从分布式文件系统读取出错概率会更高.因此 HDFS Client 提供…
接前文 分布式存储-HDFS 架构解析,我们总体分析了 HDFS 架构的主要构成组件包括:NameNode.DataNode 和 Client.本文首先进一步解析 HDFS NameNode 的设计和实现要点. 元数据持久化 NameNode 将所有元信息以特定的数据结构组织存放在内存中,对于 namespace 和 replication factor 的信息会进行持久化,而映射关系则不会持久化.因为映射关系是通过 DataNode 启动后定时汇报上来,即使 NameNode 重启后内存信息丢…
前面对 HDFS NameNode 和 DataNode 的架构设计实现要点做了介绍,本文对 HDFS 最后一个主要构成组件 Client 做进一步解析. 流式读取 HDFS Client 为客户端应用提供一种流式读取模型,就像访问本机文件系统一样来访问 HDFS.将复杂的分布式文件系统读取细节隐藏,简化了上层应用的使用难度.写过读取本机文件的程序员想必都很熟悉流式读取的编程模型,就不多说了. 错误处理 相比读取本机文件系统,从分布式文件系统读取出错概率会更高.因此 HDFS Client 提供…
接前文 分布式存储-HDFS 架构解析,我们总体分析了 HDFS 架构的主要构成组件包括:NameNode.DataNode 和 Client.本文首先进一步解析 HDFS NameNode 的设计和实现要点. 元数据持久化 NameNode 将所有元信息以特定的数据结构组织存放在内存中,对于 namespace 和 replication factor 的信息会进行持久化,而映射关系则不会持久化.因为映射关系是通过 DataNode 启动后定时汇报上来,即使 NameNode 重启后内存信息丢…
这是我收集的两本关于Hadoop的书,高清PDF版,在此和大家分享: 1.<Hadoop技术内幕:深入理解MapReduce架构设计与实现原理>董西成 著  机械工业出版社2013年5月出版 2.<Hadoop技术内幕:深入解析Hadoop Common和HDFS架构设计与实现原理>蔡斌.陈湘萍 著  机械工业出版社2013年4月出版 百度网盘下载地址: http://pan.baidu.com/s/1sjNmkFj…
Hadoop分布式文件系统是设计初衷是可靠的存储大数据集,并且使应用程序高带宽的流式处理存储的大数据集.在一个成千个server的大集群中,每个server不仅要管理存储的这些数据,而且可以执行应用程序任务.通过分布式存储和在各个server间交叉运算,集群和存储可以按需动态经济增长.以下的设计原则和经验是根据yahoo通过HDFS管理的40PB得来的. 1. HDFS简介 HDFS是一个分布式文件系统,并且为MapReduce分布式算法提供了一分析和传输大数据的框架.HDFS使用java编写,…
本章内容介绍下 Hadoop 自带的分布式文件系统,HDFS 即 Hadoop Distributed Filesystem.HDFS 能够存储超大文件,可以部署在廉价的服务器上,适合一次写入多次读取的场景.但 HDFS 不适合低延迟,存储大量小文件以及修改文件内容的场景.HDFS 应用比较广泛,如:MR任务.Spark任务.Hive 数据仓库以及 Hbase 数据库,它们的底层存储都可以基于 HDFS .本章将介绍 HDFS 集群的架构设计以及相关的重要概念. HDFS的设计以及概念 HDFS…
一.HDFS核心设计 数据块(block) 数据块是HDFS上最基本的存储单位 HDFS块默认大小为128M         对块进行抽象会带来的好处 一个小文件的大小可以大于网络中任意一个磁盘的容量 使用块抽象而不是文件可以简化存储子系统 块非常适合用于数据备份进而提供数据容错能力和可用性 数据块复制 HDFS为了做到可靠性创建多分数据块,MapReduce就可以在他们所在节点上处理这些数据了 HDFS将每个文件存储成块序列 每个文件的block大小和复制因子都是可配置的 HDFS-site.…