MT【230】一道代数不等式】的更多相关文章

设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+c^2}}\le\dfrac{3}{2}$ 证明:设$a=\dfrac{1}{x},b=\dfrac{1}{y},c=\dfrac{1}{z}$由$a+b+c\le abc$知$xy+yz+zx\le 1$\begin{align}\label{} \sum\dfrac{1}{\sqrt{1+a^2}}…
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond       题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使得总合并代价达到最小. 输入描述 Input Descrip…
T1准确率 [题目描述] 你是一个骁勇善战.日刷百题的OIer. 今天你已经在你OJ 上提交了y 次,其中x次是正确的,这时,你的准确率是x/y.然而,你最喜欢一个在[0; 1] 中的有理数p/q(是一个既约分数),所以你希望再进行若干次提交,使你的准确率变为p/q. 当然,由于你的实力很强,你可以随意决定进行多少次正确的提交和多少次错误的提交. 同时,你不希望把一天的时间都用在提交上,所以你想求出最少还要进行多少次提交(包括正确的和错误的),才能达到这一目标.注意:本题中,0/1 和1/1 都…
才四月份,上半年的比赛就告一段落了.. 天梯赛混子,三十个人分最低,把队友拖到了国三,蓝桥杯省二滚粗,止步京城,旅游选拔赛成功选为替补二队,啊! 不过既然已经过去,我们说些乐观的一面,积累了大赛经验是肯定的,明年是肯定要继续的,放弃是不可能放弃的.挨个分析一下这几场比赛的总结: 1.天梯赛.模拟赛的时候就感觉自己速度不太行,虽然练了一个星期,比赛的时候还是遇到了状况.首先自己的点奥出了问题.电脑好了帐号又不同步..当然这只是心态爆炸的第一步,比赛开始马上开进阶,开了二十分钟,才拿一半的分,啊啊啊…
(2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$ 证明:\begin{align*}\textbf{原式} & \iff 2\sum{(y+z)(z+x)}-5\prod(x+y)\ge0\\ & \iff 2\sum{z^2+(x+y)z+xy}-5\left((x+y+z)(xy+yz+zx)-xyz\right)\ge0\\ &…
已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个非负4个非正(或者2非正4非负)的情况.不妨设$x_1,x_2\ge0;x_3,x_4,x_5,x_6\le0$,记$a_1=x_1,a_2=x_2,a_k=-x_k (k=3,4,5,6)$则题目变为已知$a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2=6,a_1+a_2=…
解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.…
若不等式$k\sin^2B+\sin A\sin C>19\sin B\sin C$对任意$\Delta ABC$都成立,则$k$的最小值为_____ 分析:由正弦定理得$k>\dfrac{19bc-ac}{b^2}$,令$a=x+y,b=y+z,c=z+x,x,y,z>0$,则$\dfrac{19bc-ac}{b^2}=\dfrac{(z+x)(19(y+z)-(x+y))}{(y+z)^2}<\dfrac{(z+x)(20y+19z-x))}{(y+z)^2}\le\dfrac…
] 评:此题有分析的味道在里面,用到了n次多项式的韦达定理,用到了零点存在定理以及代数基本定理:n次多项式在复数域上有n个根.…