LSTM如何解决梯度消失或爆炸的?】的更多相关文章

from:https://zhuanlan.zhihu.com/p/44163528 哪些问题? 梯度消失会导致我们的神经网络中前面层的网络权重无法得到更新,也就停止了学习. 梯度爆炸会使得学习不稳定, 参数变化太大导致无法获取最优参数. 在深度多层感知机网络中,梯度爆炸会导致网络不稳定,最好的结果是无法从训练数据中学习,最坏的结果是由于权重值为NaN而无法更新权重. 在循环神经网络(RNN)中,梯度爆炸会导致网络不稳定,使得网络无法从训练数据中得到很好的学习,最好的结果是网络不能在长输入数据序…
RNN梯度消失和爆炸的原因 经典的RNN结构如下图所示: 假设我们的时间序列只有三段,  为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: 假设在t=3时刻,损失函数为  . 则对于一次训练任务的损失函数为  ,即每一时刻损失值的累加. 使用随机梯度下降法训练RNN其实就是对  .  .  以及  求偏导,并不断调整它们以使L尽可能达到最小的过程. 现在假设我们我们的时间序列只有三段,t1,t2,t3. 我们只对t3时刻的  求偏导(其他时刻类似): 可以看出对于  求偏导并没有…
  1RNN为什么会有梯度消失问题 (1)沿时间反向方向:t-n时刻梯度=t时刻梯度* π(W*激活函数的导数)  …
循环神经网络进阶 BPTT 反向传播过程中,训练模型通常需要模型参数的梯度. \[ \frac{\partial L}{\partial \boldsymbol{W}_{qh}} = \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{o}_t}, \frac{\partial \boldsymbol{o}_t}{\partial \boldsymbol{W}_{qh}}\right) = \sum_{t=1}…
写在最前面,感谢这两篇文章,基本上的框架是从这两篇文章中得到的: https://zhuanlan.zhihu.com/p/28687529 https://zhuanlan.zhihu.com/p/28749444 这部分是我给组内的同学做的一个分享PPT,在这里记录一下.…
转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案.本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆炸的原因,第三部分对提出梯度消失及爆炸的解决方案.有基础的同鞋可以跳着阅读. 其中,梯度消失爆炸的解决方案主要包括以下几个部分. - 预训练加微调 - 梯度剪切.权重正则(针对梯度爆炸) - 使…
本宝宝又转了一篇博文,但是真的很好懂啊: 写在前面:知乎上关于lstm能够解决梯度消失的问题的原因: 上面说到,LSTM 是为了解决 RNN 的 Gradient Vanish 的问题所提出的.关于 RNN 为什么会出现 Gradient Vanish,上面已经介绍的比较清楚了,本质原因就是因为矩阵高次幂导致的.下面简要解释一下为什么 LSTM 能有效避免 Gradient Vanish. 对于 LSTM,有如下公式 模仿 RNN,我们来计算 ,有 <img src="https:…
1.RNN模型结构 循环神经网络RNN(Recurrent Neural Network)会记忆之前的信息,并利用之前的信息影响后面结点的输出.也就是说,循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上时刻隐藏层的输出.下图为RNN模型结构图: 2.RNN前向传播算法 RNN前向传播公式为: 其中: St为t时刻的隐含层状态值: Ot为t时刻的输出值: ①是隐含层计算公式,U是输入x的权重矩阵,St-1是t-1时刻的状态值,W是St-1作为输入的权重矩阵,$\…
转自https://blog.csdn.net/guoyunfei20/article/details/78283043 神经网络中梯度不稳定的根本原因:在于前层上的梯度的计算来自于后层上梯度的乘积(链式法则).当层数很多时,就容易出现不稳定.下边3个隐含层为例: 其b1的梯度为: 加入激活函数为sigmoid,则其导数如下图: sigmoid导数σ'的最大值为1/4.同常一个权值w的取值范围为abs(w) < 1,则:|wjσ'(zj)| < 1/4,从而有: 从上式可以得出结论:前层比后层…
(1)梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸. 原因:前面层上的梯度是来自于后面层上梯度的乘乘积.当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸. (2)梯度消失(vanishing gradient problem): 原因:例如三个隐层.单神经元网络: 则可以得到: 然而,sigmoid方程的导数曲线为: 可以看到,sigmoid导数的最大值为1/4,通常abs(w)<1,则: 前面的层比后面的层梯度变…