MATLAB用二分法.不动点迭代法及Newton迭代(切线)法求非线性方程的根 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验原理 二.实验步骤 三.实验过程 1.(程序) (1)二分法:求   在区间(1,2)之间的根,取 (a)bipart.m: function [x,m]=bipart(fun,a0,b0,tol) a=a0;b=b0; m=1+round(round(log((b-a)/tol))/log(2)); for k=1…
http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分. 所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化.otsu算法被认为是图像分割中阈值选取的最…
http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分. 所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化.otsu算法被认为是图像分割中阈值选取的最…
关键词:牛顿法.牛顿迭代法.牛顿切线法.牛顿-拉弗森方法 参考:牛顿迭代法-百度百科.牛顿切线法-百度文库数学学院.牛顿切线法数值分析.非线性方程(组)的数值解法.Latex入门 https://blog.csdn.net/ccnt_2012/article/details/81837154 一.牛顿切线法基本思想 背景 多数方程不存在求根公式(参考:伽罗瓦理论.一元五次方程求根公式),因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要.方法使用函数的泰勒级数的前面几项来寻找方…
这句话大致意思就是: b = 0;for i = 1:3    a(i) = b;end是说变量的长度是变化的,经常在循环里出现,比如上面这个例子,这样会影响计算速度,最好的办法是预先定义a的长度,比如b = 0;a = zeros(1,3);for i = 1:3    a(i) = b;end 所以,为了减少运行时间,在对特定大小的矩阵进行预分配内存可以实现 a(10000,20000) = 0;      %方法一,直接赋值为零 time=0.0021832秒. a=zeros(10000…
图像算法:图像阈值分割 SkySeraph Dec 21st 2010  HQU Email:zgzhaobo@gmail.com    QQ:452728574 Latest Modified Date:Dec.21st 2010 HQU 一.工具:VC+OpenCV 二.语言:C++ 三.原理(略) 四.程序 主程序(核心部分)  代码 1 /*===============================图像分割=====================================*/…
问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图): 设xk是方程f(x)=0的精确解x*附近的一个猜测解,过点Pk(xk,f(xk))作f(x)的切线.该切线与x轴的交点比xk更接近方程的精确解程x*. 迭代公式为:xk+1= xk - f(xk)/f '(xk),当f(x)的绝对值足够小的时候即可结束迭代. 注意:对于本题给定函数f(x),f…
这个算是ICP算法中的一个关键步骤,单独拿出来看一下. 算法流程如下: 1.首先得到同名点集P和X. 2.计算P和X的均值up和ux. 3.由P和X构造协方差矩阵sigma. 4.由协方差矩阵sigma构造4*4对称矩阵Q. 5.计算Q的特征值与特征向量.其中Q最大特征值对应的特征向量即为最佳旋转向量q. 6.通过四元数q得到旋转矩阵R. 7.根据R计算最佳平移向量qr. 具体公式我就不贴图了,可以参考这篇“ICP算法在点云配准中的应用”论文的3.1节. 处理效果如下: 原始点集: 其中蓝点为原…
牛顿迭代 若 \[G(F_0(x))\equiv 0(mod\ x^{2^t})\] 牛顿迭代 \[F(x)\equiv F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))}(mod\ x^{2^{t+1}})\] 以下多数都可以牛顿迭代公式一步得到 多项式求逆 给定\(A(x)\)求满足\(A(x)*B(x)=1\)的\(B(x)\) 写成 \[A(x)*B(x)=1(mod \ x^n)\] 我们会求\[A(x)*B(x)=1(mod \ x^1)\] 然后我们考虑求\[A…
//牛顿迭代法! /* ============================================================ 题目:用牛顿迭代法求解3*x*x*x-2*x*x-16=0的近似解. ============================================================ */ #include<stdio.h> #include<math.h> #define E 1e-8 double hs(double x) {…