https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 Resnet: model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet…
Pytorch预训练模型以及修改 pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet.densenet.inception.resnet.squeezenet.vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数).往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数.加载model如下所示: import torchvision.models as models 1.加…
数据集预览: GlobeLand30是30米空间分辨率全球地表覆盖数据,目前可供下载使用的有3年的数据:2000-2010-2020,本文主要讲述GlobeLand30的官网下载地址和数据集简介. 数据处理方法.成果数据下载: [ArcGIS风暴]ArcGIS平台实现中国地表覆盖数据GlobeLand30预处理(批量投影.拼接.掩膜提取) [ArcGIS风暴]ArcGIS生成GlobeLand30土地利用数据集中国区域行列号shp格式对照图 目录 一.GlobeLand30简介 1 数学基础 2…
什么是预训练模型 简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型.你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手. 比如说,你如果想做一辆自动驾驶汽车,可以花数年时间从零开始构建一个性能优良的图像识别算法,也可以从Google在ImageNet数据集上训练得到的Inception model(一个预训练模型)起步,来识别图像. 一个预训练模型可能对于你的应用中并不是100%的准确对口,但是它可以为你节省大量功夫…
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文本分类实践. 知识点 语言模型和词向量 BERT 结构详解 BERT 文本分类 BERT 全称为 Bidirectional Encoder Representations from Transformer,是谷歌在 2018 年 10 月发布的语言表示模型.BERT 通过维基百科和书籍语料组成的庞…
文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.models 模型比较 torchvision 官网上的介绍(翻墙):The torchvision package consists of popular datasets, model architectures, and common image transformations for compu…
windows10 预览版 中英文官方下载地址+激活密钥+网盘分享 产品密钥:NKJFK-GPHP7-G8C3J-P6JXR-HQRJR 英语 64 位 (x64)  http://iso.esd.microsoft.com/W9TPI/FD54DF81A4CCF4511BA1445C606DDBA2/WindowsTechnicalPreview-x64-EN-US.iso 英语 32 位 (x86) http://iso.esd.microsoft.com/W9TPI/FD54DF81A4C…
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在.所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的: def weight_init(m): # 使用isinstance来判断m属于什么类型 if…
转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练,也就是简单的从保存的模型中加载参数权重: net = SNet() net.load_state_dict(torch.load("model_1599.pkl")) 这种方式是针对于之前保存模型时以保存参数的格式使用的: torch.save(net.state_dict(), &qu…
2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优势,通过深度神经网络与多任务学习等技术,持续学习海量数据和知识.基于该框架的艾尼(ERNIE)预训练模型,已累计学习10亿多知识,包括词法.句法.语义等多个维度的自然语言知识,有很强的通用语义表示能力,适用于各种NLP应用场景,效果提升明显,使用高效.便捷. 本篇内容教大家如何下载和使用! 一.预训…