Luogu 4869 albus就是要第一个出场】的更多相关文章

BZOJ 2844 被NOIP模拟赛题弄自闭了QuQ. 因为本题要求异或,所以自然地构造出线性基,假设本题中给出的数有$n$个,而我们构造出的线性基大小为$m$,那么每一个可以异或出来的数相当于出现了$2^{n - m}$次. 可以把那些已经存在于异或空间中的数看成$0$,因为我们一共能凭凑出$2^m$个不同的异或值,剩下的$n - m$个数相当于可选可不选,所以每一个值有$2^{n - m}$种方案异或上一个$0$. 然后算一算$q$在不重复的异或空间中排第几就可以了,具体做法就是把$q$用二…
2844: albus就是要第一个出场 题意:给定一个n个数的集合S和一个数x,求x在S的$2^n$个子集从小到大的异或和序列中最早出现的位置 一开始看错题了...人家要求的是x第一次出现位置不是第x个是谁 求出线性基后我们知道一共有$2^r$个不同的数,再知道每个数出现了几次就好啦 每个数出现了$2^{n-r}$次....因为有$n-r$个线性相关(高斯消元后全0了)的方程异或不影响.... 然后就简单了,从高到低枚举二进制位,异或这一位后小于k就加上 #include <iostream>…
CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Square Subsets 题目链接 题意 给定\(n\)个数,求多少种选数方案使得选出来的数乘积为完全平方数.\(n\leq 100000,a_i\leq70\). 完全平方数的本质就是每个质因子的次数为偶数. 所以我们将每一个数唯一分解,然后记录每个质因子的奇偶状态,就得到了一个个01串.问题就变成了有多少个集…
2844: albus就是要第一个出场 Time Limit: 6 Sec  Memory Limit: 128 MBSubmit: 1134  Solved: 481[Submit][Status][Discuss] Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子 集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切…
2844: albus就是要第一个出场 链接 分析: 和HDU3949差不多互逆,这里需要加上相同的数. 结论:所有数任意异或,构成的数出现一样的次数,次数为$2^{n-cnt}$,cnt为线性基的大小. 结论:集合中所有异或值为0的集合有$2^{n-cnt}$个(包括空集). 证明及详细过程参考:https://blog.sengxian.com/algorithms/linear-basis,https://blog.csdn.net/jaihk662/article/details/786…
[BZOJ2844]albus就是要第一个出场 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始). 给定一个数, 那么这个数在序列B中第1次出现时的下标是多少呢? I…
一.题目 albus就是要第一个出场 二.分析 非常有助于理解线性基的一题. 构造线性基$B$后,如果$|A| > |B|$,那么就意味着有些数可以由$B$中的数异或出来,而多的数可以取或者不取,相当于每多一个数,那么线性基能生成的数的子集的种类就可以乘以$2$,最终就是乘以$2^{|A|-|B|}$. 所以对于给定的$Q$,要确定它是由哪些位置的线性基中的数生成的,然后确定它在不重复序列中的位置,然后再乘以$2^{|A|-|B|}$,最终还需要$+1$,因为前面求的其实是不包含这个数的子集总个…
Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合. 定义映射 f : 2^S -> Z f(空集) = 0f(T) = XOR A[t] , 对于一切t属于T 现在albus把2^S中每个集合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始). 给定一个数, 那么这个数在序列B中第1次出现时的下标是多少呢? Input 第一行一个数n, 为序列A的长度…
Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始). 给定一个数, 那么这个数在序列B中第1次出现时的下标是多少呢? Input 第一行一个数n, 为序列A的长度.接下…
Time Limit: 6 Sec  Memory Limit: 128 MBSubmit: 2254  Solved: 934[Submit][Status][Discuss] Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子 集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集…