反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能) 这就要求对梯度下降法做少许改进. 实现过程:  一.正向传播 首先,同逻辑回归,我们求出神经网络输出与实际值的“误差”——COST: 这里先使用欧式距离而不是索夫曼函数作为输出的cost: 展开之后: (注意右边的权重衰减项,既规则化) 二.反向传播 对于第  层(输出层)的每个输出单元 ,我们…
近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的.从最主要的感知机開始讲起.到后来使用logistic函数作为激活函数的sigmoid neuron,和非常多其它如今深度学习中常使用的trick. 把深度学习的一个发展过程讲得非常清楚,并且还有非常多源代码和实验帮助理解.看完了整个tutorial后打算再又一次梳理一遍,来写点总结.以后再看其它资料…
DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别?(别笑,我不是“学院派”的看Deep Learning理论,如果“顺次”看下来,可能不会有这个问题),现在了解的差不多了,详情见:[deep learning学习笔记]Autoencoder.之后,又有个疑问,DA具体的权重更新公式是怎么推导出来的?我知道是BP算法,不过具体公示的推导.偏导数的求…
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得懂# UFDL链接 : http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 自编码器( Autoencoders ):(概述) 自编码器是只有一层隐藏节点,输入和输出具有相同节点数的神经网络. 自编码器的目的是求的函数 . 也…
 1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351?qid=108adce3-2c3d-4758-a830-95d0a57e46bc&v=&b=&from_search=3 网盘下载链接:http://pan.baidu.com/s/1nv54p9R     密码:3mty. 中文在线课程:Hung-yi Lee (http://spe…
深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础. 回顾监督学习的一般性问题.假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, (x_m, y_m)\}$,其中$x$为输入向量,$y$为输出向量,利用这个训练样本训练模型的参数,使得给定模型一个$x_{test}$,其能够预测$y_{test}$. 采用CNN模型的时候,$x$输入向量全部喂给输入层,$y$输出向量和输出层的向量一起计算损失函数,而其中若干个神经元的隐藏层,每…
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这个反向传播算法? 回到我们监督学习的一般问题,假设我们有m个训练样本:$\{(x_1,y_1), (x_2,y_2), ..., (x_m,y_m)\}$,其中$x$为输入向量…
神经元: 在神经网络的模型中,神经元可以表示如下 神经元的左边是其输入,包括变量x1.x2.x3与常数项1, 右边是神经元的输出 神经元的输出函数被称为激活函数(activation function),输出值被称为激活值(activation value). 激活函数有很多种,其中最简单的莫过于sigmoid函数. 除非特别声明,否则博客里提及的激活函数均为sigmoid 神经网络: 多个神经元首尾相连连接成神经网络(Neural Network),可以表示如下: 尽管生物体中神经云之间的连接…
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不对的地方,欢迎批评指正. 二.<一天搞懂深度学习> 300多页的PPT,台大教授写的好文章. 对应的视频地址 1.Lecture I: Introduction of Deep Learning (1)machine learning≈找函数 training和testing过程 (2)单个神经网…
主要内容: Spotify是个类似酷我音乐的音乐站点.做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 详细内容: 1. 协同过滤 基本原理:某两个用户听的歌曲都差点儿相同,说明这两个用户听歌的兴趣.品味类似.某两个歌曲,被同一群人听,说明这两个歌曲风格类似. 缺点: (1)没有利用歌曲本身的特征(信息) (2)无法对"层级"的item进行处理,对于歌曲来说,这样的层级关系体如今:专辑-主打歌-副歌,上面,这几种因素并非同等重要的 (3)冷启动问…