LingPipe-TextClassification(文本分类)】的更多相关文章

实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
What is Text Classification? Text classification typically involves assigning a document to a category by automated or human means. LingPipe provides a classification facility that takes examples of text classifications--typically generated by a huma…
影评文本分类 文本分类(Text classification):https://www.tensorflow.org/tutorials/keras/basic_text_classification主要步骤: 1.加载IMDB数据集 2.探索数据:了解数据格式.将整数转换为字词 3.准备数据 4.构建模型:隐藏单元.损失函数和优化器 5.创建验证集 6.训练模型 7.评估模型 8.可视化:创建准确率和损失随时间变化的图 IMDB数据集 包含来自互联网电影数据库的50000条影评文本 http…
酒店评论情感分析系统(四)—— 基于LingPipe的文本基本极性分析[demo] (Positive (favorable) vs. Negative (unfavorable)) 这篇文章为LingPipe官方网站对于Sentiment Ananlysis的学习所给出学习材料: http://alias-i.com/lingpipe/demos/tutorial/sentiment/read-me.html 官方网站中的学习材料是通过使用逻辑回归分类器基于一定的语言模型对电影评论赋予一定的情…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
这是前一段时间在做的事情,有些python库需要python3.5以上,所以mac请先升级 brew安装以下就好,然后Preference(comm+',')->Project: Text-Classification-m...->Project Interpreter->setting button->add,添加python的虚拟环境(usr/local/bin/python3.7),然后就去安装那些包 然后去github找一份代码学习下,在此之前请先连接这个技术需要什么,我找…
这里做了一些小的修改,感谢谷歌rd的帮助,使得能够统一处理dense的数据,或者类似文本分类这样sparse的输入数据.后续会做进一步学习优化,比如如何多线程处理. 具体如何处理sparse 主要是使用embedding_lookup_sparse,参考 https://github.com/tensorflow/tensorflow/issues/342 两个文件 melt.py binary_classification.py 代码和数据已经上传到 https://github.com/ch…
Atitti 文本分类  以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案 1.1. 七.什么是贝叶斯过滤器?1 1.2. 八.建立历史资料库2 1.3. 十.联合概率的计算3 1.4. 十一.最终的计算公式3 1.5. .这时我们还需要一个用于比较的门槛值.Paul Graham的门槛值是0.9,概率大于0.9,4 1.1. 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法&quo…
weka介绍 参见 1)百度百科:http://baike.baidu.com/link?url=V9GKiFxiAoFkaUvPULJ7gK_xoEDnSfUNR1woed0YTmo20Wjo0wYo7uff4mq_wg3WzKhTZx4Ok0JFgtiYY19U4q 2)weka官网: http://www.cs.waikato.ac.nz/ml/weka/ 简单文本分类实现: 此处文本为已处理好的文本向量空间模型,关于文本特征提取主要是基于TF-IDF算法对已分词文档进行特征抽取,然后基于…