我们在上一章学习了Python并发编程的一种实现方法——多线程.今天,我们趁热打铁,看看Python并发编程的另一种实现方式——Asyncio.和前面协程的那章不太一样,这节课我们更加注重原理的理解. 通过上节课的学习,我们知道在进行I/O操作的时候,使用多线程与普通的单线程比较,效率有了很大的提高,既然这样,为什么还要Asyncio呢? 虽然多线程有诸多优点并且应用广泛,但是也存在一定的局限性: ※多线程运行过程很容易被打断,因此有可能出现race condition的情况 ※线程的切换存在一…
我们在上一章将生成器的时候最后写了,在Python2中生成器还扮演了一个重要的角色——实现Python的协程.那什么是协程呢? 协程 协程是实现并发编程的一种方式.提到并发,肯很多人都会想到多线程/多进程模型,这就是解决并发问题的经典模型之一.在最初的互联网世界中,多线程/多进程就在服务器并发中起到举足轻重的作用. 但是随着互联网的发展,慢慢很多场合都会遇到C10K瓶颈,也就是同时连接到服务器的客户达到1W,于是,很多代码就跑崩溃,因为进程的上下文切换占用了大量的资源,线程也顶不住如此巨大的压力…
我在以前的帖子里讲了装饰器的用法,这里我们来具体讲一讲Python中的装饰器,这里,我们从前面讲的函数,闭包为切入点,引出装饰器的概念.表达和基本使用方法.其次,我们结合一些实际工程中的例子,以便能再次理解. 一.函数与装饰器 函数的核心 第一点,在Python中,函数是“一等公民”(first-class citizen)(在有些资料例如流畅的Python中被叫做一等对象),函数也是对象,我们可以把函数赋予变量,比如下面的代码 def fun(message): print('Get a me…
我们在前面已经接触到了很多Python对象比较的例子,例如这样的 a = b = a == b 或者是将一个对象进行拷贝 l1 = [,,,,] l2 = l1 l3 = list(l1) 那么现在试一下下面的代码:先创建个列表l1,再把这个列表进行一份拷贝至l2,最后把l1添加一个元素,看l2会发生什么变化? >>> l1 = [,,,,] >>> l2 = l1 >>> l1.append() >>> l2 [, , , , ,…
上篇博客中我们使用python自带的urllib模块去请求一个网站,或者接口,但是urllib模块太麻烦了,传参数的话,都得是bytes类型,返回数据也是bytes类型,还得解码,想直接把返回结果拿出来使用的话,还得用json,发get请求和post请求,也不通,使用比较麻烦,还有一个比较方便的模块,比urllib模块方便很多,就是requests模块,它使用比较方便,需要安装,pip install requests即可,下面是requests模块的实例 #1.发get请求 url = 'ht…
协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作的业务中能极大提高效率. 系列文章 python并发编程之threading线程(一) python并发编程之multiprocessing进程(二) python并发编程之asyncio协程(三) python并发编程之gevent协程(四) python并发编程之Queue线程.进程.协程通信(…
什么是Asyncio 多线程有诸多优点且应用广泛,但也存在一定的局限性: 比如,多线程运行过程容易被打断,因此有可能出现 race condition 的情况:再如,线程切换本身存在一定的损耗,线程数不能无限增加,因此,如果I/O 操作非常 heavy,多线程很有可能满足不了高效率.高质量的需求. 因此,Asyncio 应运而生. Sync(同步) VS Async(异步) 所谓 Sync,是指操作一个接一个地执行,下一个操作必须等上一个操作完成后才能执行.而 Async 是指不同操作间可以相互…
我们在前面的几节课里讲了Python的并发编程的特性,也了解了多线程编程.事实上,Python的多线程有一个非常重要的话题——GIL(Global Interpreter Lock).我们今天就来讲一讲这个GIL. 一个不解之谜 我们先来看一看这个例子: def CountDown(n): while n>0: n -= 1 现在,我们假设有个很大的数字n=100000000,我们来试试单线程的情况下 执行这个函数,然后看看怎么执行的 import time def main(): start_…
我们在前面应该写过类似的代码 for i in [1,2,3,4,5]: print(i) for in 语句看起来很直观,很便于理解,比起C++或Java早起的 ; i<n;i++) printf("d\n",a[i]) 是不是简洁清晰的多.但是我们有没有想过Python在处理for in语句的时候,具体发生了什么吗?什么样的对象可以被for in用来枚举呢? 所以,这一节我们就深入到Python的容器类型实现底层看一看,了解一下迭代器和生成器. 前面用过的容器.可迭代对象和迭…
今天通过面向对象来对照一个案例分析一下,主要模拟敏捷开发过程中的迭代开发流程,巩固面向对象的程序设计思想. 我们从一个最简单的搜索做起,一步步的对其进行优化,首先我们要知道一个搜索引擎的构造:搜索器.索引器.检索器和用户接口四个部分.搜索器,就是俗话说的爬虫,它在互联网上大量爬去各类网站上的内容,送给索引器.索引器拿到网页和内容后会对内容进行处理,形成索引,存储于内部的数据库等待检索.用户接口就是网页和App前端界面.用户同通过接口想搜索引擎发出询问,询问解析后送达检索器:检索器搞笑检索后,再将…