动态记忆网络(DMN)】的更多相关文章

论文:Ask Me Anything: Dynamic Memory Networks for Natural Language Processing 1.概述 Question answering(QA)是一个复杂的自然语言处理任务,它需要杰出的文本理解力和推理能力.自然语言处理中不部分任务都可以归结为 QA 问题.例如机器翻译(这句话翻译成法语是什么?):序列标注问题(包括词性标注.命名实体识别等):情感分类等.动态神经网络(DMN)是一个统一的神经网络框架,可以用来处理输出的问题序列,形成…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/245 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
Learning Dynamic Memory Networks for Object Tracking  ECCV 2018Updated on 2018-08-05 16:36:30 Paper: arXiv version Code: https://github.com/skyoung/MemTrack (Tensorflow Implementation) [Note]This paper is developed based on Siamese Network and DNC(Na…
https://mp.weixin.qq.com/s/_xILvfEMx3URcB-5C8vfTw 这个库的目的是探索用深度学习进行NLP文本分类的方法. 它具有文本分类的各种基准模型,还支持多标签分类,其中多标签与句子或文档相关联. 虽然这些模型很多都很简单,可能不会让你在这项文本分类任务中游刃有余,但是这些模型中的其中一些是非常经典的,因此它们可以说是非常适合作为基准模型的. 每个模型在模型类型下都有一个测试函数. 我们还探讨了用两个seq2seq模型(带有注意的seq2seq模型,以及tr…
https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learning 1.2 Simple Word Vector representations: word2vec, GloVe Lecture 2:词向量表示:语言模型,softmax分类器,单隐层神经网络 2.1 Advanced word vector representations: language…
NLP十大里程碑 2.1 里程碑一:1985复杂特征集 复杂特征集(complex feature set)又叫做多重属性(multiple features)描写.语言学里,这种描写方法最早出现在语音学中.美国计算语言学家Martin Kay于1985年在“功能合一语法”(FunctionalUnification Grammar,简称FUG)新语法理论中,提出“复杂特征集”(complex feature set)概念.后来被Chomsky学派采用来扩展PSG的描写能力. 图1 美国计算语言…
GitHub NLP项目:自然语言处理项目的相关干货整理 自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域.本文作者为自然语言处理NLP初学者整理了一份庞大的自然语言处理项目领域的概览,包括了很多人工智能应用程序.选取的参考文献与资料都侧重于最新的深度学习研究成果.这些自然语言处理项目资源能为想要深入钻研一个自然语言处理NLP任务的人们提供一个良好的开端. 自然语言处理项目的相关干货整理: 指代消解 https://github.com/Kyu…
模型: FastText TextCNN TextRNN RCNN 分层注意网络(Hierarchical Attention Network) 具有注意的seq2seq模型(seq2seq with attention) Transformer("Attend Is All You Need") 动态记忆网络(Dynamic Memory Network) 实体网络:追踪世界的状态 其他模型: BiLstm Text Relation: Two CNN Text Relation:…
导读:这篇文章中作者尝试将 15 年的自然语言处理技术发展史浓缩为 8 个高度相关的里程碑事件,不过它有些偏向于选择与当前比较流行的神经网络技术相关的方向.我们需要关注的是,本文中介绍的许多神经网络模型都建立在同时代的非神经网络技术之上.在文章的最后,作者强调了这些有影响力的技术成果,它们为以后的 NLP 方法发展奠定了基础. 这是两篇系列文章中的第一篇.在 2018 年的 Indaba 深度学习大会 上,Herman Kamper 和我组织了一场自然语言处理研讨会,整个会议的幻灯片可以在 这里…