ResNet网络,本文获得2016 CVPR best paper,获得了ILSVRC2015的分类任务第一名. 本篇文章解决了深度神经网络中产生的退化问题(degradation problem).什么是退化问题呢?如下图: 上图所示,网络随着深度的增加(从20层增加到56层),训练误差和测试误差非但没有降低,反而变大了.然而这种问题的出现并不是因为过拟合(overfitting). 照理来说,如果我们有一个浅层的网络,然后我们可以构造一个这样的深层的网络:前面一部分的网络和浅层网络一模一样,…
论文地址:Deep Residual Learning for Image Recognition ResNet--MSRA何凯明团队的Residual Networks,在2015年ImageNet上大放异彩,在ImageNet的classification.detection.localization以及COCO的detection和segmentation上均斩获了第一名的成绩,而且Deep Residual Learning for Image Recognition也获得了CVPR20…
Deep Residual Learning for Image Recognition 简介 这是何大佬的一篇非常经典的神经网络的论文,也就是大名鼎鼎的ResNet残差网络,论文主要通过构建了一种新的网络结构来解决当网络层数过高之后更深层的网络的效果没有稍浅层网络好的问题,并且做出了适当解释,用ResNet很好的解决了这个问题. 背景 深度卷积神经网络已经在图像分类问题中大放异彩了,近来的研究也表明,网络的深度对精度起着至关重要的作用.但是,随着网络的加深,有一个问题值得注意,随着网络一直堆叠…
目录 主要内容 代码 He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vision and pattern recognition, 2016: 770-778. @article{he2016deep, title={Deep Residual Learning for Image Recognition}, author={He, Kaiming and Zhang,…
作者:何凯明等,来自微软亚洲研究院: 这篇文章为CVPR的最佳论文奖:(conference on computer vision and pattern recognition) 在神经网络中,常遇到的问题: 1.   当网络变深以后的 vanishing/exploding gradient 问题:  对于这一个问题,现在可以说差不多已经有解决的办法了,如:使用 ReLU激活函数. 良好的权值初始化方法 .还有 intermediate normalization layers(即网络中间的…
Abstract We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, inste…
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun           Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com Abstract摘要 Deeper neural networks are more difficult to train. We present a residual learning framework to ease the traini…
深度在神经网络中有及其重要的作用,但越深的网络越难训练. 随着深度的增加,从训练一开始,梯度消失或梯度爆炸就会阻止收敛,normalized initialization和intermediate normalization能够解决这个问题.但依旧会出现degradation problem:随着深度的增加,准确率会达到饱和,再持续增加深度则会导致准确率下降.这个问题不是由于过拟合造成的,因为训练误差也会随着深度增加而增大. 假定输入是x,期望输出是H(x),如果我们直接把输入x传到输出作为初始…
目录 0. 论文链接 1. 概述 2. 残差学习 3. Identity Mapping by shortcuts 4. Network Architectures 5. 训练细节 6. 实验 @ 0. 论文链接 ResNet 1. 概述   从AlexNet出现后,后面的模型包括VGG,GoogLe-Net等都是想办法让网络边更宽更深,因为大量的实验证明网络更深更宽它的性能会更好.比较容易想到的是一味的增加深度会使得梯度爆炸/消失,但这问题在很大程度上使用标准化初始赋值跟中间层(BN)解决.但…
目录 1. 故事 2. 残差学习网络 2.1 残差块 2.2 ResNet 2.3 细节 3. 实验 3.1 短连接网络与plain网络 3.2 Projection解决短连接维度不匹配问题 3.3 更深的bottleneck结构 ResNet的意义已经不需要我在这里赘述.该文发表在2016 CVPR,至今(2019.10)已有3万+引用.由于ResNet已经成为大多数论文的baseline,因此我们着重看其训练细节.测试细节以及bottleneck等思想. 核心: We explicitly…
转自:http://blog.csdn.net/solomonlangrui/article/details/52455638   ABSTRACT:           神经网络的训练因其层次加深而变得愈加困难.我们所提出的残差学习框架可以更轻松的对比前人所提深很多的网络进行训练.相对于之前网络所学习的是无参考的函数,我们显著改进的网络结构可根据网络的输入对其残差函数进行学习.我们提供的详实经验证据表明对这样的残差网络进行寻优更加容易,并且随网络层次的显著加深可以获得更好的准确率.我们利用Im…
1. 摘要 更深的神经网络通常更难训练,作者提出了一个残差学习的框架,使得比过去深许多的的网络训连起来也很容易. 在 ImageNet 数据集上,作者设计的网络达到了 152 层,是 VGG-19 的 8 倍,但却有着更低的复杂性.通过集成学习模型最终取得了 3.57% 的错误率,获得了 ILSVRC 2015 比赛的第一名. 表示的深度对于许多视觉识别任务而言至关重要,仅仅由于特别深的表示,作者在 COCO 物体检测数据集上获得了 28% 的相对改进. 2. 介绍 深度神经网络通常集成了低层.…
最近准备用Resnet来解决问题,于是重读Resnet的paper <Deep Residual Learning for Image Recognition>, 这是何恺明在2016-CVPR上发表的一篇paper,在2015年12月已经发布在arXiv上,并且用文中所述的网络在 2015年 的ILSVRC获得分类任务冠军,在2015-COCO detection,segmentation 的冠军. 先说一下新的收获: 结合了caffe的prototxt才知道, F(x) + x ,是 el…
最近在做一个分类的任务,输入为3通道车型图片,输出要求将这些图片对车型进行分类,最后分类类别总共是30个. 开始是试用了实验室师姐的方法采用了VGGNet的模型对车型进行分类,据之前得实验结果是训练后最高能达到92%的正确率,在采用了ImageNet训练过的DataLayer之后,可以达到97%的正确率,由于我没有进行长时间的运行测试,运行了十几个小时最高达到了92%的样子. 后来是尝试使用Deep Residual Learning的ImageNet(以后简称ResNet)的实现方法,十几个小…
之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域,在一定程度上缓解了这种问题.不过,当网络的层数急剧增加时,BP 算法中导数的累乘效应还是很容易让梯度慢慢减小直至消失.这篇文章中介绍的深度残差 (Deep Residual) 学习网络可以说根治了这种问题.下面我按照自己的理解浅浅地水一下 Deep Residual Learning 的基本思想,并…
ResNet可以说是在过去几年中计算机视觉和深度学习领域最具开创性的工作.在其面世以后,目标检测.图像分割等任务中著名的网络模型纷纷借鉴其思想,进一步提升了各自的性能,比如yolo,Inception-v4等. ResNet通过重构模型对残差映射(Residual mapping)进行拟合,而非以往那样拟合期望的潜在映射(Underlying mapping).借助这一举措,ResNet解决了"退化问题"(Degradation problem),使得训练数百甚至数千层网络成为可能,且…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline  如上图所示,本文旨在解决一个问题:给定一张图像,我们最应该关注哪些区域?怎么将其分割出来?这是一个什么东东?这三个子问题为一体. Problem formulation: Given an image, determine the most influential item in the scene in terms of region of i…
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的异构网络(HIN)嵌入方法本质上可以归结为两个步骤(1)正样本生成和负样本生成(2)在这些样本上训练模型优化目标函数以得到更合适的节点嵌入.目前主流的异构网络嵌入方法存在以下几个问题: Problem 1: 首先,这些算法一般从原始网络中随机选择节点与中心节点组合生成正样本或者负样本,即,…
总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话, 我们可以将残差看作误差的观测值."更准确地,假设我们想要找一个 xx,使得 f(x)=bf(x)=b,给定一个 xx 的估计值 x0x0,残差(residual)就是 b−f(x0)b−f(x0),同时,误差就是 x−x0x−x0 为什么需要堆叠更深的NN呢? 论文阐述道 -- 深度神经网络自然…
论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxiv.org/abs/1905.05812 文章同时使用视觉.语音.和文本(语言)信息进行情感分析,通过增加视觉和语音信号,补足了一些无法通过文本来进行判断的情况,例如下图中,第一句话需要图像才能判断为负面情绪,第二句话同时语音和图像才能判断为负面情绪. 一.模型架构 模型整体思路 1.首先,每一个模…
端到端学习几何和背景的深度立体回归 摘要     本文提出一种新型的深度学习网络,用于从一对矫正过的立体图像回归得到其对应的视差图.我们利用问题(对象)的几何知识,形成一个使用深度特征表示的代价量(cost volume).我们通过对这一匹配代价卷使用3D卷积来学习结合上下文信息.利用本文提出的一种可微分的soft argmin操作可以对匹配代价卷回归得到视差值,这使得我们可以直接端到端地训练我们的网络达到亚像素级别的精度,而不需要任何后处理和正则化.我们在Scene Flow和 KITTI数据…
12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时间图注意(TGAT)层,以有效地聚合时间-拓扑邻域特征,并学习时间-特征之间的相互作用.对于TGAT,本文采用自注意机制作为构建模块,并基于调和分析中的经典Bochner定理(又是没见过的定理QAQ)发展了一种新的函数时间编码技术. Conclusion 本文提出了一种新颖的时间感知图注意网络,用于…
Column: March 23, 2022 1:08 PM Last edited time: March 23, 2022 11:13 PM Sensor/组织: 现leaderboard第一名,RC上总分94分 前无古人后无来者 Status: Reading Summary: IL; 输出 中间层 map再去学 Type: CVPR Year: 2022 参考与前言 代码地址:https://github.com/dotchen/LAV 论文地址: Learning from All V…
这是期刊论文的版本,不是会议论文的版本.看了论文之后,只能说,太TM聪明了.膜拜~~ 视频的表示方法有很多,一般是把它看作帧的序列.论文提出一种新的方法去表示视频,用ranking function的参数编码视频的帧序列.它使用一个排序函数(ranking function)主要基于这样的假设:帧的appearance的变化与时间相关,如果帧vt+1在vt后面,则定义:此外,假设同一动作的视频帧序列,学习到的排序函数的参数,应该的大致一致的.但实际上,后面的假设并没有给出严格的证明,只能说实验的…
文章:Between-class Learning for Image Classification 链接:https://arxiv.org/pdf/1711.10284.pdf CVPR2018 作者尝试了将在音频上的方法用在图像上的,并提出了一种将图像作为波形处理的混合方法(作者认为图形波长融合人类没法识别,但对机器而言却是有意义的信息).cnns有将输入数据作为波形处理的操作,作者提出的BC learning 其实就是将两个不同类的图像混合,并训练模型输出混合比,靠近哪个就分为哪类. 一…
前言 CVPR2016 来自Korea的POSTECH这个团队   大部分算法(例如HCF, DeepLMCF)只是用在大量数据上训练好的(pretrain)的一些网络如VGG作为特征提取器,这些做法证实利用CNN深度特征对跟踪结果有显著提升. 但是毕竟clssification 和 tracking是两个不同的课题 (predicting object class labels VS locating targets of arbitrary classes.) 所以作者设计了一个网络来做跟踪…
哨兵2号云检测的语义分割,提出了CloudNet,不使用池化和上采样操作,从头到尾保持原图大小,中间每个块使用ASPP和残差连接,网络结构如下 比较了CNN, FCN, DeeplabV3+,效果都没CloudNet好,效果最好的层数是12,分支是8个…
目录 1. OVERVIEW 2. DEGRADATION 3. SOLUTION(DEEP RESIDUAL LEARNING) 4. IMPLEMENTATION(SHORTCUT CONNECTIONS) 论文:Deep residual learning for image recognition He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE…