引言:2018年7月25日,DataPipeline CTO陈肃在第一期公开课上作了题为<从ETL到ELT,AI时代数据集成的问题与解决方案>的分享,本文根据陈肃分享内容整理而成. 大家好!很高兴今天有机会和大家分享一些数据集成方面的看法和应用经验.先自我介绍一下.我叫陈肃,博士毕业于中国科学院大学,数据挖掘研究方向.现在北京数见科技(DataPipeline)任 CTO.之前在中国移动研究院任职算法工程师和用户行为实验室技术经理,之后作为合伙人加入过一家互联网教育公司,从事智能学习方面的研发…
目前,中国企业在大数据流通.交换.利用等方面仍处于起步阶段,但是企业应用数据集成市场却是庞大的.根据 Forrester 数据看来,2017 年全球数据应用集成市场纯软件规模是 320 亿美元,如果包括人工在内,将达到 3940 亿美元. 在数据应用集成领域中,既有 Oracle.SAP.微软.Informatica 等传统的 IT 大佬,更有众多的创新型企业,其中 DataPipeline 就是一家通过提供批流一体的数据融合.数据清洗.数据同步等服务,帮助企业连接内外部数据孤岛,实现数据交换与…
文 | 陈肃 DataPipelineCTO 交流微信 | datapipeline2018 本文完整PPT获取 | 关注公众号后,后台回复“陈肃” 首先,本文将从数据融合角度,谈一下DataPipeline对批流一体架构的看法,以及如何设计和使用一个基础框架.其次,数据的一致性是进行数据融合时最基础的问题.如果数据无法实现一致,即使同步再快,支持的功能再丰富,都没有意义. 另外,DataPipeline目前使用的基础框架为Kafka Connect.为实现一致性的语义保证,我们做了一些额外工作…
导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPipeline CTO陈肃分享了DataPipeline是如何基于Kafka Connect框架构建实时数据集成平台的应用实践.以下内容是基于现场录音整理的文字,供大家参考. 什么是数据集成?最简单的应用场景就是:一个数据源,一个数据目的地,数据目的地可以一个数据仓库,把关系型数据库的数据同步到数据仓库…
用来处理数据的 ETL 和 ELT 工具的概述 数据集成和数据管理技术已存在很长一段时间.提取.转换和加载(ETL)数据的工具已经改变了传统的数据库和数据仓库.现在,内存中转换 ETL 工具使得提取.加载.转换(ELT)和 ETL 变得更快.对于大数据来说,是否能够使用内置的 Hadoop 工具而不是使用传统的 ETL 工具来提取.加载和转换数据呢? 大多数 ETL 软件包需要自己的服务器.处理.数据库和许可,还需要专家在该特定的工具中安装.配置和开发它们,而且这些技能并非总是可以转移的.Mic…
ETL就是Extract.Transfrom.Load即抽取.转换.加载三个英文单词首字母的集合.抽取:就是从源系统抽取需要的数据,这些源系统可以是同构也可以是异构的:比如源系统可能是Excel电子表格.XML文件.关系型数据库,而目标系统通常都是关系型的数据仓库. 转换:源系统的数据按照分析目的,转换成目标系统要求的格式.其实这个名词并没有完全表达出这个步骤的目的,更准确的说法应该是数据清洗和数据加工. 加载:把转换后的数据装载到目标数据库.作为联机分析.数据挖掘的基础.   整个ETL过程就…
不多说,直接上干货! 在数据仓库领域里,的一个重要概念就是数据整合(data intergration).数据整合它就是把不同数据库中的数据整合到一起,对外提供统一的数据视图. 数据整合最典型的案例就是整合存货数据和订单数据.数据整合的另一个案例就是把各个部门的客户关系管理系统中的客户信息整合到公司客户关系管理系统中. 数据整合是一个比ETL更加广泛的概念,ETL是指从一个或多个数据源抽取数据,经过一个或多个转换步骤后,物理地存储到目标环境中,目标环境通常是数据仓库. ETL是data inte…
如果您接触过数据仓库, 您可能会使用 ETL (Extract. Transform. Load) 或 ELT ( Extract.Load. Transform) 将您的数据从不同的来源提取到数据仓库中.这些是移动数据或集成数据的常用方法, 以便您可以关联来自不同来源的信息, 将数据安全地存储在一个位置, 并使公司的成员能够从不同业务部门查看综合数据.ETL和ELT两个术语的区别与过程的发生顺序有关.这些方法都适合于不同的情况. 一.什么是ETL? ETL是用来描述将数据从来源端经过抽取(ex…
文 | 陈肃 DataPipeline  CTO 随着企业应用复杂性的上升和微服务架构的流行,数据正变得越来越以应用为中心. 服务之间仅在必要时以接口或者消息队列方式进行数据交互,从而避免了构建单一数据库集群来支撑不断增长的业务需要.以应用为中心的数据持久化架构,在带来可伸缩性好处的同时,也给数据的融合计算带来了障碍. 由于数据散落在不同的数据库.消息队列.文件系统中,计算平台如果直接访问这些数据,会遇到可访问性和数据传输延迟等问题.在一些场景下,计算平台直接访问应用系统数据库会对系统吞吐造成显…
在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeline Manager的概念,主要用于优化Source和Sink的全局化生命周期管理.当任务出现异常时,可以实现对目的端和全局生命周期的管理.例如,处理源端到目的端读取速率不匹配以及暂停等状态的协同. 为了加强系统的健壮性,我们把Connector任务的参数保存在ZooKeeper中,方便任务重启后读…