信息往往还存在着诸如树结构.图结构等更复杂的结构.这就需要用到递归神经网络 (Recursive Neural Network, RNN),巧合的是递归神经网络的缩写和循环神经网络一样,也是RNN,递归神经网络可以处理树.图这样的递归结构. 递归神经网络 神经网络的输入层单元个数是固定的,因此必须用循环或递归的方式来处理长度可变的输入.循环神经网络实现通过长度不定的输入分割为等长度的小块,然后再依次的输入到网络中,从而实现了神经网络对变长输入的处理.一个典型的例子是,当我们处理一句话的时候,我们…
深度学习课程笔记(十六)Recursive Neural Network  2018-08-07 22:47:14 This video tutorial is adopted from: Youtube =====>>  问题是:language 到底是否是 recursive 的呢? ======>> 上述几个图,就展示了这个语法树的成长过程... ================================================== ========>&g…
目录 1 什么是RNNs 2 RNNs能干什么 2.1 语言模型与文本生成Language Modeling and Generating Text 2.2 机器翻译Machine Translation 2.3 语音识别Speech Recognition 2.4 图像描述生成 Generating Image Descriptions 3 如何训练RNNs 4 RNNs扩展和改进模型 4.1 Simple RNNsSRNs2 4.2 Bidirectional RNNs3 4.3 DeepB…
2017-12-18 23:42:33 一.什么是深度学习 深度学习(deep neural network)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法.          --Wiki 在人工智能领域,有一个方法叫机器学习.在机器学习这个方法里,有一类算法叫神经网络.神经网络如下图所示: 上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接.我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连…
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID网络结构 5 参考资源 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
前馈神经网络(Feedforward Neural Network - BP) 常见的前馈神经网络 感知器网络 感知器(又叫感知机)是最简单的前馈网络,它主要用于模式分类,也可用在基于模式分类的学习控制和多模态控制中.感知器网络可分为单层感知器网络和多层感知器网络. BP网络 BP网络是指连接权调整采用了反向传播(Back Propagation)学习算法的前馈网络.与感知器不同之处在于,BP网络的神经元变换函数采用了S形函数(Sigmoid函数),因此输出量是0~1之间的连续量,可实现从输入到…
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # 配置GPU或CPU设置 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 超参数设置 sequence_length = 28 input_size = 28 hidden_size = 128 num_l…
本文结构: 模型 训练算法 基于 RNN 的语言模型例子 代码实现 1. 模型 和全连接网络的区别 更细致到向量级的连接图 为什么循环神经网络可以往前看任意多个输入值 循环神经网络种类繁多,今天只看最基本的循环神经网络,这个基础攻克下来,理解拓展形式也不是问题. 首先看它和全连接网络的区别: 下图是一个全连接网络: 它的隐藏层的值只取决于输入的 x     而 RNN 的隐藏层的值 s 不仅仅取决于当前这次的输入 x,还取决于上一次隐藏层的值 s: 这个过程画成简图是这个样子:     其中,t…
线性模型通过特征间的现行组合来表达“结果-特征集合”之间的对应关系.由于线性模型的表达能力有限,在实践中,只能通过增加“特征计算”的复杂度来优化模型.比如,在广告CTR预估应用中,除了“标题长度.描述长度.位次.广告id,cookie“等这样的简单原始特征,还有大量的组合特征(比如”位次-cookie“ 表示用户对位次的偏好).事实上,现在很多搜索引擎的广告系统用的都是Logistic Regression模型(线性),而模型团队最重要的工作之一就是“特征工程 (feature engineer…