SparkSQL---实战应用】的更多相关文章

摘要   如果要想真正的掌握sparkSQL编程,首先要对sparkSQL的整体框架以及sparkSQL到底能帮助我们解决什么问题有一个整体的认识,然后就是对各个层级关系有一个清晰的认识后,才能真正的掌握它,对于sparkSQL整体框架这一块,在前一个博客已经进行过了一些介绍,如果对这块还有疑问可以看我前一个博客:http://9269309.blog.51cto.com/9259309/1845525.本篇博客主要是对sparkSQL实战进行讲解和总结,而不是对sparkSQL源码的讲解,如果…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 Spark系列-SparkSQL 之前系统的计算大部分都是基于Kettle + Hive的方式,但是因为最近数据暴涨,很多Job的执行时间超过了1个小时,即使是在优化了HiveQL的情况下也有超过30分钟,所以近期把计算引擎从Hive变更为Spark. 普通的简单Job就使用SparkSQL来计算,数据流是经过spark计算,把结果插入到Mysql中 在项目中新建三个类,第一个Logger类用于日志的输出 # coding=utf-…
C# C#中 Thread,Task,Async/Await,IAsyncResult 的那些事儿!https://www.cnblogs.com/doforfuture/p/6293926.htmlAsp.net缓存技术(HttpRuntime.Cache)https://www.cnblogs.com/fengxuehuanlin/p/5358219.htmlCache及(HttpRuntime.Cache与HttpContext.Current.Cache)https://www.cnbl…
Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1.1 显示前10条数据 1.2 删除所有列的空值和NaN 1.3 删除某列的空值和NaN 1.4 删除某列的非空且非NaN的低于10的 1.5 填充所有空值的列 1.6 对指定的列空值填充 1.7 查询空值列 1.8 查询非空列 二.Dataset行列操作和执行计划 2.1 常用包 2.2 创建Spa…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .SparkSQL的发展历程 1.1 Hive and Shark SparkSQL的前身是Shark,给熟悉RDBMS但又不理解MapReduce的技术人员提供快速上手的工具,Hive应运而生,它是当时唯一运行在Hadoop上的SQL-on-Hadoop工具.但是MapReduce计算过程中大量的中间磁盘落地过程消耗了大量的I/O,降低的运行效率,为了提高SQL-on-Hadoop的效率,大量的S…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.1  运行环境说明 1.1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软件:VMware® Workstation 9.0.0 build-812388 l  虚拟机操作系统:CentOS6.5 64位,单核 l  虚拟机运行环境: Ø  JDK:1.7.0_55 64位 位) Ø  Scala:2.10.4 Ø  Spark:1.1.0(需要编译) Ø  Hive:0.13.1…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .运行环境说明 1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软件:VMware® Workstation 9.0.0 build-812388 l  虚拟机操作系统:CentOS 64位,单核 l  虚拟机运行环境: Ø  JDK:1.7.0_55 64位 位) Ø  Scala:2.10.4 Ø  Spark:1.1.0(需要编译) Ø  Hive:0.13.1 1.2 机器网络…
本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介绍 Join是数据库查询永远绕不开的话题,传统查询SQL技术总体可以分为简单操作(过滤操作-where.排序操作-limit等),聚合操作-groupby以及Join操作等.其中Join操作是最复杂.代价最大的操作类型,也是OLAP场景中使用相对较多的操作.因此很有必要对其进行深入研究. 另外,从业…
之前的运行数据被清除了,只能再运行一次,对比一下sparkSQL语句的影响 纯SQL的时间 对应时间表 th:first-child,.table-bordered tbody:first-child tr:first-child>td:first-child,.table-bordered tbody:first-child tr:first-child>th:first-child{-webkit-border-top-left-radius:4px;-moz-border-radius-…
代码存在码云:https://coding.net/u/funcfans/p/sparkProject/git 代码主要学习https://blog.csdn.net/u012318074/article/category/6744423/1这里的 发现样例作为正式项目来说效率太低了,为了知识点而知识点.对原代码做了一定优化 第1个项目:用户访问session随机抽取统计 用户数量一般在100(测试环境)10的8次方(生产环境),不管是哪种都比访问数据少的多.一般这种数据量可以装入内存,使用Ma…