pytorch1.0网络保存.提取.加载 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as plt # 假数据 x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y d…
前面的两篇博文 第一篇:简单的模型保存和加载,会包含所有的信息:神经网络的op,node,args等; 第二篇:选择性的进行模型参数的保存与加载. 本篇介绍,只保存和加载神经网络的计算图,即前向传播的过程. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: save_restore.py #Brief: #Author: frank #Mail: frank0903@aliy…
怎样让通过训练的神经网络模型得以复用? 本文先介绍简单的模型保存与加载的方法,后续文章再慢慢深入解读. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: saver.py #Brief: #Author: frank #Mail: frank0903@aliyun.com #Created Time:2018-06-22 22:12:52 ##################…
模型的保存与加载一般有三种模式:save/load weights(最干净.最轻量级的方式,只保存网络参数,不保存网络状态),save/load entire model(最简单粗暴的方式,把网络所有的状态都保存起来),saved_model(更通用的方式,以固定模型格式保存,该格式是各种语言通用的) 具体使用方法如下: # 保存模型 model.save_weights('./checkpoints/my_checkpoint') # 加载模型 model = keras.create_mod…
技术背景 近几年在机器学习和传统搜索算法的结合中,逐渐发展出了一种Search To Optimization的思维,旨在通过构造一个特定的机器学习模型,来替代传统算法中的搜索过程,进而加速经典图论等问题的求解.那么这里面就涉及到一个非常关键的工程步骤:把机器学习中训练出来的模型保存成一个文件或者数据库,使得其他人可以重复的使用这个已经训练出来的模型.甚至是可以发布在云端,通过API接口进行调用.那么本文的内容就是介绍给予MindSpore的模型保存与加载,官方文档可以参考这个链接. 保存模型…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
上一遍博文提到 有些场景下,可能只需要保存或加载部分变量,并不是所有隐藏层的参数都需要重新训练. 在实例化tf.train.Saver对象时,可以提供一个列表或字典来指定需要保存或加载的变量. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: restore.py #Brief: #Author: frank #Mail: frank0903@aliyun.com #Crea…
内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建立模型,随机初始化权重和偏置; 模型的参数必须要使用变量 3.求损失函数,误差为均方误差 4.梯度下降去优化损失过程,指定学习率 2.Tensorflow运算API: 1.矩阵运算:tf.matmul(x,w) 2.平方:tf.square(error) 3.均值:tf.reduce_mean(error)…
写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度快一些.在使用tf.nn.rnn_cell.BasicLSTMCell()进行建模的时候,遇到了模型保存.加载的问题. 查找了一些博主的经验,再加上自己摸索,在这里做个笔记,总结经验.其中关键要素有以下3点: 1.需要保存哪些变量(tensor),就要给哪些变量取名字(即name='XXXXX').…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_load.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/checkpoint_resu…