1.介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类).本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络和边界网络(Smooth Network and Border Network).平滑网络用的是通道注意力块(Channel Attention Block),来解决类内不一致性.边界网络集成了语义边界损失. 2.相关工作 Encoder-Decoder:主要考虑如何恢复由于池化造成的空间信息损失,…
旷世18年的CVPR,论文链接:https://arxiv.org/abs/1804.09337 Motivation:针对分割中的“类内不一致”和“类间一致性”的两大问题,设计了结合Smooth net和Border net的DFN网络来解决这一问题: Pipeline: 一.设计Smooth net来解决类内不一致问题: 析:低层特征具有更加精确的空间信息,但语义信息贫乏:高层特征具有更加精确的语义信息,但空间信息很粗糙:因此需要想办法来结合低层特征精确的空间信息和高层特征精确的语义信息:…
论文源址:https://arxiv.org/abs/1505.04366 tensorflow代码:https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation 基于DenconvNet的钢铁分割实验:https://github.com/fourmi1995/IronSegExperiment-DeconvNet 摘要 通过学习一个反卷积网络来实现分割算法, 本文卷积部分基于改进的VGG-16,反卷积网络部分由反卷积层和…
创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 channel attention 来挑选出最具有识别力的特征 3.迁移学习来解决数据稀缺的问题,用了不同分辨率训练好的数据 目标数据集: landsat-8 和 ISPRS Vaihingen Challenge Dataset 语义分割现代技术: 1.global context(全局上下文信息):如…
from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里,先介绍几个概念,也是图像处理当中的最常见任务. 语义分割(semantic segmentation) 目标检测(object detection) 目标识别(object recognition) 实例分割(instance segmentation) 语义分割 首先需要了解一下什么是语义分割(s…
论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method 作者声明 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 原文链接:https://www.cnblogs.com/phoenixash/p/15371354.ht…
题目:Learning Deconvolution Network for Semantic Segmentation 作者:Hyeonwoo Noh, Seunghoon Hong, Bohyung Han 年份:2015 会议:ICCV 说面: Segmantic Segmentation(语义分割) 简单来说就是对图像的每个像素都做分类.输入左边的图片会得到右边分割后后图片. 2.解决的问题 之前使用FCN(注:FCN是2015年发表的论文第一次将卷积神经网络用于语义分割,实现了端到端的语…
论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet 摘要 在移动端上进行实时的像素级分割十分重要.基于分割的深度神经网络中存在大量的浮点运算而且需要经过较长的时间才可以进行投入使用.该文提出的ENet目的是减少潜在的计算.ENet相比现存的分割网络,速度快18倍,参数量要少79倍,同时分割得到的准确率不有所损失,甚至有所提高. 介绍 目前,增强现实可…
原文地址:DeepLabv3 代码: TensorFlow Abstract DeepLabv3进一步探讨空洞卷积,这是一个在语义分割任务中:可以调整滤波器视野.控制卷积神经网络计算的特征响应分辨率的强大工具.为了解决多尺度下的目标分割问题,我们设计了空洞卷积级联或不同采样率空洞卷积并行架构.此外,我们强调了ASPP(Atrous Spatial Pyramid Pooling)模块,该模块可以在获取多个尺度上卷积特征,进一步提升性能.同时,我们分享了实施细节和训练方法,此次提出的DeepLab…
A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Introduction: 语义分割是计算机视觉当中非常重要的一个课题,其广泛的应用于各种类型的数据,如:2D image,video,and even 3D or volumetric data. 最近基于 deep learning 的方法,取得了非常巨大的进展,在语义分割上也是遥遥领先于传统算法. 本…