FP分数规划在无线通信中的应用】的更多相关文章

/* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文<最小割模型在信息学竞赛中的应用>中详细介绍了分数规划思想的应用.经典的有最优比率生成树. 对于分数规划的应用中,常用的就是0-1分数规划,即解向量X = {x1, --,xi, --}, 对于∀xi∈{0,1}. 主要求解过程是,首先将原分式优化问题,转换成非分式优化问题,利用单调的性质,用二分逼…
一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的结点的深度来确定$tb数组$中的滑块. 因为分数规划要找的是$max$,BFS遍历当前结点的深度越来越大,这样滑块也是单调向右滑动,所以滑块里的最大值就应当用单调队列解决 #include<cstdio> #include<algorithm> #define read(x) x=ge…
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等价为: Minimize   λ = f(x) = sigma(wexe)/sigma(1*xe) = w•x / c•x 其中, x表示一个解向量,xe∈{0, 1} ,即对于每条边都有选与不选两种决策,并且选出的边集组成一个s-t边割集. 联系已有的知识,这是一个0-1分数规划.在胡伯涛<最小割…
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz-- ♦01分数规划 参考Amber-胡伯涛神牛的论文<最小割模型在信息学竞赛中的应用> °定义 分数规划(fractional programming)的一般形式: Minimize  λ = f(x) = a(x) / b(x)   ( x∈S  && ∀x∈S, b(x) &…
给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi,则∑ai-ans*∑bi=0. 设f[ans]=∑ai-ans*∑bi,我们要求一个ans的最大值,使得存在一组解,满足f[ans]=0,而其他的任意解都有f[ans]<=0(如果f[ans]>0,说明∑ai/∑bi>ans,即还有比ans更优的解),对于∑ai/∑bi,从0~1二分枚举答案…
因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012/05/03/01fsgh.html [关键字] 0/1分数规划.最优比率生成树.最优比率环 [背景] 根据楼教主的回忆录,他曾经在某一场比赛中秒掉了一道最优比率生成树问题,导致很多人跟风失败,最终悲剧. 自己总结了一些这种问题的解法,因为水平有限,如果有错误或是麻烦的地方,尽管喷,邮箱或是下方留言…
题目链接 题目描述 Description CS有n个小区,并且任意小区之间都有两条单向道路(a到b,b到a)相连.因为最近下了很多暴雨,很多道路都被淹了,不同的道路泥泞程度不同.小A经过对近期天气和地形的科学分析,绘出了每条道路能顺利通过的时间以及这条路的长度. 现在小A在小区1,他希望能够很顺利地到达目的地小区n,请帮助小明找出一条从小区1出发到达小区n的所有路线中(总路程/总时间)最大的路线.请你告诉他这个值. 输入描述 Input Description 第一行包含一个整数n,为小区数.…
用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ 前提是在TLE了好几次下过的 = = 题目意思:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目是要求一棵最优比率生成树. 解题思路: 对答案进行二分,当把代进去的答案拿来算最小生成树的时候,一旦总路径长度为0,就是需要的答案. 0-1规划是啥? 概念有带权图G, 对于图中每条…
这个题目难度非常大,首先对于老师的一种方案,应用分数规划的一般做法,求出所有的c=t-rate*p,如果没有选择的c值中的最大值比选择了的c值中的最小值大,那么这个解是可以改进的. 那么问题就转化成了怎么求最小的c和最大的c. t-rate*p 求这种类型的最值,并且rate是单调的,那么就可以考虑利用斜率优化的那种办法来维护决策点. 考虑两个决策点,得到ti-tj>rate(pi-pj)  但是这个pi pj的大小不能确定,我们知道可以利用斜率优化的问题不仅仅要rate单调,还需要pi 单调…
Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 [Description] In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be . G…