多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理. 用户界面可以更加吸引人,比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度. 程序的运行速度可能加快. 在一些等待的任务实现上如用户输入.文件读写和网络收发数据等,线程就比较有用了.在这种情况下我们可以释放一些珍贵的资源如内存占用等等. 每个独立的线程有一个程序运行的入口.顺序执行序列和程序的出口.但是线程不能够独立执行,必须依存在应用程序中,由应用程序提…
利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况.比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的. 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年记录的药物销量都是时间序列. 时间序列的类型 根据时间间隔的不同,时间序列可以是按年度(Annual).季度.月度.周.小时.分钟.秒等频率采集的序列. 时间序列的成分 趋势(Trend),比如长期上涨或长期下跌. 季节性(Seas…
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称. ARIMA是一种基于时间序列历史值和历史值上的预测误差来对当前做预测的模型. ARIMA整合了自回归项AR和滑动平均项MA. ARIMA可以建模任何存在一定规律的非季节性时间序列. 如果时间序列具有季节性,则需要使用SARIMA(Seasonal ARIMA)建模,后续会…
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n…
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量训练中堆叠 LSTM 网络 总结 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras 原文使用 python 实现模型…
简单使用 代码如下 这是官网的quickstart的内容,csv文件也可以下到,这个入门以后后面调试加入其它参数就很简单了. import pandas as pd import numpy as np from fbprophet import Prophet import matplotlib.pyplot as plt df = pd.read_csv('prophet2.csv') df['y'] = np.log(df['y']) df.head() m = Prophet() m.f…
预测未来永远是一件让人兴奋而又神奇的事.为此,人们研究了许多时间序列预测模型.然而,大部分的时间序列模型都因为预测的问题过于复杂而效果不理想.这是因为时间序列预测不光需要大量的统计知识,更重要的是它需要将问题的背景知识融入其中.为此,Prophet充分的将两者融合了起来,提供了一种更简单.灵活的预测方式,并且在预测准确率上达到了与专业分析师相媲美的程度.如果你还在为时间序列预测而苦恼,那就一起走进兴奋而又神奇的Prophet世界吧. 前言 时间序列预测一直是预测问题中的难点,人们很难找到一个适用…
博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测.所用项目和数据集来自:真实业界数据的时间序列预测挑战. 1 项目简单介绍 1.1 背景介绍 本项目的目标是建立内部与外部特征结合的多时序协同预测系统.数据集采用来自业界多组相关时间序列(约40组)与外部特征时间序列(约5组).课题通过进行数据探索,特征工程,传统时序模型探索,机器学习模型探索,深度学…
一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完成任务,若你对RNN及LSTM不甚了解,请移步上一篇数据科学学习手札39; 二.数据说明及预处理 2.1 数据说明 我们本文使用到的第一个数据来自R中自带的数据集AirPassengers,这个数据集记录了Box & Jenkins航空公司1949-1960年共144个观测值(对应每个月的国际航线乘…
介绍 时间序列预测是一个重要的科学和商业问题,因此最近通过使用基于深度学习 而不是经典方法的模型也涌现出诸多创新.ARIMA 等经典方法与新颖的深度学习方法之间的一个重要区别如下. 概率预测 通常,经典方法针对数据集中的每个时间序列单独拟合.这些通常被称为"单一"或"局部"方法.然而,当处理某些应用程序的大量时间序列时,在所有可用时间序列上训练一个"全局"模型是有益的,这使模型能够从许多不同的来源学习潜在的表示. 一些经典方法是点值的 (poin…