Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来. 接下来,CodeStar决定要考考他,于是每问他一…
思路: 把斐波那契通项公式转化成log的形式,高中数学... //By SiriusRen #include <bits/stdc++.h> using namespace std; ],n; int main(){ f[]=f[]=; ;i<=;i++)f[i]=f[i-]+f[i-]; while(~scanf("%d",&n)){ )printf("%d\n",f[n]); else{ /sqrt())+n*log10((+sqrt(…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=20的时候,不足四位,所以直接打表. 当n>20的时候,大于四位的时候,ans满足这个公式:ans=-0.5*log10(5.0)+num*1.0*log10((1+sqrt(5.0))/2.0); 这个公式是怎么来的呢?我们可以对an取10的对数,根据对数的性质. log10(ans)=log10(1/…
//C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleTest { class Program { static void Main(string[] args) { OutPut4(); } //方法1,使用while循环 public static vo…
题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… 如果求其第6项,则应为8. 求第n项菲氏数. 输入描述:输入数据含有不多于50个的正整数n(0<=n<=46). 输出描述:对于每个n,计算其第n项菲氏数,每个结果应单独占一行. 题目分析:先把第0项到第46项的斐波那契数求出来,放在一个数组中,然后,直接查表即可,这样就不会超时. 参考代码:…
题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace std; ; ; int a; struct Matrix { int m[maxn][maxn]; }ans,res,w,head; Matrix mul(Matrix a,Matrix b,int n) { Matrix tmp; ; i <= n; i++) ; j <= n; j++) t…
http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d, 修改k的为值增加d 2 l r, 查询l到r的区间和 3 l r, 从l到r区间上的所以数变成最近的斐波那契数,相等的话取向下取. 就是线段树搞,每个节点lazy表示该节点以下的位置是否都是斐波那契数,找比x小的斐波那契数使用lower_bound+加特判最近即可 #include <cstdio> #include <cstdlib> #include <…
迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 = n2+n1 n1 = n2 n2 = n3 n-=1 return n3 number = int(input("请输入要求的斐波那契数的第几个数:")) result = fab(number) print(result) 递归实现如下: def fab(n): if n==1 o…
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接近于黄金分割率 (2) 那么前一项比后一项则为1/黄金分割率(备注:其实有这么一个规律0.618/1=1/1.618=1.618/2.618=0.618) (3) 那么(2)(3)带入(1)可得 可以求得黄金分割率的根为 对于广义的斐波那契数列: 一般项可以表示为: 因此: 当  这个函数趋向于 开…
#include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF){ int x1,x2,i,x; x1=; x2=; ) printf("); ) printf("1 1"); ) { printf("%d %d",x1,x2); ;i<=n;i++) { x=x1+x2; printf(" %d",x); x1=x2; x2=…