强化学习应用于游戏Tic-Tac-Toe】的更多相关文章

1. Trees Tree is a recursive structure. 1.1 math nodes https://class.coursera.org/principlescomputing-001/wiki/view? page=trees 1.2 CODE无parent域的树 http://www.codeskulptor.org/#poc_tree.py class Tree: """ Recursive definition for trees plus…
题目:给定一个3*3的矩阵,是一个井字过三关游戏.开始为X先走,问你这个是不是一个合法的游戏.也就是,现在这种情况,能不能出现.如果有人赢了,那应该立即停止.那么可以知道X的步数和O的步数应该满足x==o+1或者x==o这种情况是允许的,这种情况是O赢.(x==o)这种情况是X赢(x==o+1).那么就可以知道 如果 ①.如果x>o+1(步数过多)||o>x(不符合x先行的规矩)  printf("no\n"); ②.如果是x赢了win(x)但是x!=o+1 不行 ③.如果…
题面: C. Team Tic Tac Toe Input file: standard input Output file: standard output Time limit: 1 second Memory limit: 256 megabytes   Farmer John owns 26 cows, which by happenstance all have names starting with different letters of the alphabet, so Farmer…
题目如下: Tic-tac-toe is played by two players A and B on a 3 x 3 grid. Here are the rules of Tic-Tac-Toe: Players take turns placing characters into empty squares (" "). The first player A always places "X" characters, while the second pl…
Tic-Tac-Toe游戏为3*3格子里轮流下棋,一方先有3子成直线的为赢家. 参考代码如下,我只删除了几个没用的地方: ####################################################################### # Copyright (C) # # 2016 - 2018 Shangtong Zhang(zhangshangtong.cpp@gmail.com) # # 2016 Jan Hakenberg(jan.hakenberg@gm…
17.2 Design an algorithm to figure out if someone has won a game oftic-tac-toe. 这道题让我们判断玩家是否能赢井字棋游戏,有下面几点需要考虑: 1. 判断是否能赢hasWon函数是调用一次还是多次,如果是多次,我们可能为了优化而需要加入一些预处理. 2. 井字棋游戏通常是3x3的大小,我们是否想要实现NxN的大小? 3. 我们需要在代码紧凑,执行速度和代码清晰之间做出选择. #include <iostream> #…
说明 用python实现了井字棋,整个框架是本人自己构思的,自认为比较满意.另外,90%+的代码也是本人逐字逐句敲的. minimax算法还没完全理解,所以参考了这里的代码,并作了修改. 特点 可以选择人人.人机.机人.机机四种对战模式之一 电脑玩家的AI使用了minimax算法,带apha-beta剪枝 电脑玩家在思考时,时时刻刻都有一个"假想敌".以便使得minimax算法运转起来 代码 作者:hhh5460 时间:2017年6月26日 # 棋盘 class Board(objec…
网上搜寻到的代码,亲测比较好用,分享如下. import gym import time env = gym.make('CartPole-v0') # 获得游戏环境 observation = env.reset() # 复位游戏环境,新一局游戏开始 print ('新一局游戏 初始观测 = {}'.format(observation)) for t in range(200): env.render() action = env.action_space.sample() # 随机选择动作…
地址 https://www.acwing.com/solution/LeetCode/content/6670/ 题目描述A 和 B 在一个 3 x 3 的网格上玩井字棋. 井字棋游戏的规则如下: 玩家轮流将棋子放在空方格 (” “) 上.第一个玩家 A 总是用 “X” 作为棋子,而第二个玩家 B 总是用 “O” 作为棋子.“X” 和 “O” 只能放在空方格中,而不能放在已经被占用的方格上.只要有 3 个相同的(非空)棋子排成一条直线(行.列.对角线)时,游戏结束.如果所有方块都放满棋子(不为…
N*N matrix is given with input red or black.You can move horizontally, vertically or diagonally. If 3 consecutive samecolor found, that color will get 1 point. So if 4 red are vertically then pointis 2. Find the winner. def tic_tac_toe(board,n) red,…
我的代码: #include <bits/stdc++.h> using namespace std; int main() { char a[3][3]; int i,j=0; for(i=0;i<3;i++){ for(j=0;j<3;j++){ cin>>a[i][j]; } } int count1,count2; int len1,len2; len1=len2=0; char b[50],c[2][50]; count1=count2=0; for( i=0…
 原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== 如何让AI依照人类的意图行事?这是将AI应用于现实世界复杂问题的最大障碍之一. DeepMind将这个问题定义为“智能体对齐问题”,并提出了新的解决方案. 概述了解决agent alignment问题的研究方向.所提出的方法依赖于奖励建模的递归应用,以符合用户意图的方式解决复杂的现实世界问题. 强…
今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战>.本篇论文主要以扑克进行实验,探讨深度强化学习与普通强化学习相比的优势.研究此类游戏不只是可以让程序打赢人类大师,还可以帮助开发算法,应用于更复杂的真实世界环境中,例如机场和网络安全.金融和能源贸易.交通管制和疏导,帮助人们在不完美的信息和高维度信息状态空间中进行决策.深度强化学习不需要依赖人类专家的原有…
强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent并在环境中活动.当每次行动过后,Agent接收到环境反馈.反馈包括回报Reward和环境的下个状态State,回报由模型设计者定义.如果类比人类学习自行车,可以将车从起始点到当前位置的距离定义为回报. 分类: 1)基于价值Value的强化学习算法 - Q-learning 基本思想:根据当前的状态,…
在 强化学习实战 | 表格型Q-Learning玩井字棋(三)优化,优化 中,我们经过优化和训练,得到了一个还不错的Q表格,这一节我们将用pygame实现一个有人机对战,机机对战和作弊功能的井字棋游戏.至于胜率统计这个功能,其实没有必要了--因为Q表格AI内战永远是平局.基本的pygame用法可以学习 Create a game with Pygame and Design Patterns 中的部分章节.总得来说就是逐帧绘制,循环刷新.项目地址:码云. 机机对战 Q表格 vs Q表格 点开 C…
[入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为.这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论.控制论.运筹学.信息论.模拟优化方法.多主体系统学习.群体智能.统计学以及遗传算法.在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic program…
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 数学符号说明 蒙特卡洛方法简话 蒙特卡洛是一个赌城的名字.冯·诺依曼给这方法起了这个名字,增加其神秘性. 蒙特卡洛方法是一个计算方法,被广泛…
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 术语和数学符号 时序差分学习简话 时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想. 时序差分这个词不…
许久没有更新重新拾起,献于小白 这次介绍的是强化学习 Q-learning,Q-learning也是离线学习的一种 关于Q-learning的算法详情看 传送门 下文中我们会用openai gym来做演示 q-learning的伪代码先看这部分,很重要 简单的算法语言描述就是 开始执行任务: 随机选择一个初始动作 执行这些动作 若未达到目标状态,则执行一下几步 在当前状态s所有可能的行为中选择一个a 利用a得到下一个状态s_ 计算Q(s,a) (对当前的行为进行学习) 下一个状态等于当前状态 开…
本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点,  3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法, 数学的,或者软件程序的算法而已.   对于这种 死的(固定的游戏), 我个人觉得其实就是个穷举算法而已.  Q-learning  步骤:场景一:假设前提:  成功的路  A1, A2, ..... An   …
在强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)中,我们讨论了MCTS的原理和在棋类中的基本应用.这里我们在前一节MCTS的基础上,讨论下DeepMind的AlphaGo Zero强化学习原理. 本篇主要参考了AlphaGo Zero的论文, AlphaGo Zero综述和AlphaGo Zero Cheat Sheet. 1. AlphaGo Zero模型基础 AlphaGo Zero不需要学习人类的棋谱,通过自我对弈完成棋力提高.主要使用了两个模型,第一个就是我们上一节介绍MC…
在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基于模型的强化学习方法:基于模拟的搜索(Simulation Based Search). 本篇主要参考了UCL强化学习课程的第八讲,第九讲部分. 1. 基于模拟的搜索概述 什么是基于模拟的搜索呢?当然主要是两个点:一个是模拟,一个是搜索.模拟我们在上一篇也讨论过,就是基于强化学习模型进行采样,得到样…
在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Critic难收敛的问题,这个算法就是是深度确定性策略梯度(Deep Deterministic Policy Gradient,以下简称DDPG). 本篇主要参考了DDPG的论文和ICML 2016的deep RL tutorial. 1. 从随机策略到确定性策略 从DDPG这个名字看,它是由D(Dee…
在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一些其他的优化.而Asynchronous Advantage Actor-critic(以下简称A3C)就是其中比较好的优化算法.本文我们讨论A3C的算法原理和算法流程. 本文主要参考了A3C的论文,以及ICML 2016的deep RL tutorial. 1. A3C的引入 上一篇Actor-Critic算法的代码,其实很难收敛,无论怎么调参…
在强化学习(十三) 策略梯度(Policy Gradient)中,我们讲到了基于策略(Policy Based)的强化学习方法的基本思路,并讨论了蒙特卡罗策略梯度reinforce算法.但是由于该算法需要完整的状态序列,同时单独对策略函数进行迭代更新,不太容易收敛. 在本篇我们讨论策略(Policy Based)和价值(Value Based)相结合的方法:Actor-Critic算法. 本文主要参考了Sutton的强化学习书第13章和UCL强化学习讲义的第7讲. 1. Actor-Critic…
在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习.这种Value Based强化学习方法在很多领域都得到比较好的应用,但是Value Based强化学习方法也有很多局限性,因此在另一些场景下我们需要其他的方法,比如本篇讨论的策略梯度(Policy Gradient),它是Policy Based强化学习方法,基于策略来学习. 本文参考了Sutton的强化学习书第13章和策略梯度的论文. 1. Value Based强化学习方法的不足 DQN系列强化学习算法主…
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文<Dueling Network Architectures for Deep Reinforcement Learning>(ICML 2016). 1. Dueling DQN的优化点考虑 在前面讲到的DDQN中,…
在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得优化的点,文本就关注于Nature DQN的一个改进版本: Double DQN算法(以下简称DDQN). 本章内容主要参考了ICML 2016的deep RL tutorial和DDQN的论文<Deep Reinforcement Learning with Double Q-learning…
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础上,对经验回放部分的逻辑做优化.对应的算法是Prioritized Replay DQN. 本章内容主要参考了ICML 2016的deep RL tutorial和Prioritized Replay DQN的论文<Prioritized Experience Replay>(I…
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN(NIPS 2015). 本章内容主要参考了ICML 2016的deep RL tutorial和Nature DQN的论文. 1. DQN(NIPS 2013)的问题 在上一篇我们已经讨论了DQN(NIPS 2013…