Pytorch半精度浮点型网络训练问题】的更多相关文章

用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可 3.对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常奇怪,但是Adam算法对于全精度数据类型却没有这个问题. 另外,SGD算法对于半精度和全精度计算均没有问题. 还有一个问题是不知道是不是网络…
背景: pytorch从1.6版本开始,已经内置了torch.cuda.amp,采用自动混合精度训练就不需要加载第三方NVIDIA的apex库了.本文主要从三个方面来介绍AMP: 一.什么是AMP? 二.为什么要使用AMP? 三.如何使用AMP? 四.  注意事项 正文: 一.什么是AMP? 默认情况下,大多数深度学习框架都采用32位浮点算法进行训练.2017年,NVIDIA研究了一种用于混合精度训练的方法,该方法在训练网络时将单精度(FP32)与半精度(FP16)结合在一起,并使用相同的超参数…
对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始化.为了加快训练,1024输入进网络后直接通过 pooling缩小到256的尺寸,等到输出层,直接使用bilinear放大4倍,相当于直接在256的尺寸上训练. import os import urllib import torch import torch.nn as nn import tor…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
本文所用代码gayhub的地址:https://github.com/chenyuntc/simple-faster-rcnn-pytorch  (非本人所写,博文只是解释代码) 好长时间没有发博客了,感觉也没啥人读我的博客,不过我不能放弃啊,总会有人发现它的价值的,哈哈!最近一直在生啃目标检测的几篇论文,距离成为我想象中的大神还有很远的一段距离啊,刚啃完Faster-RCNN的论文的时候,觉得可能是语言的关系,自己看得一直是似懂非懂的,感觉没有掌握到里面的精髓,于是我决定撸代码来看,据说Ros…
近日,TensorFlow模型优化工具包又添一员大将,训练后的半精度浮点量化(float16 quantization)工具. 有了它,就能在几乎不损失模型精度的情况下,将模型压缩至一半大小,还能改善CPU和硬件加速器延迟. 这一套工具囊括混合量化,全整数量化和修剪. 如何量化模型,尽可任君挑选. 压缩大小,不减精度 双精度是64位,单精度是32位,所谓的半精度浮点数就是使用2个字节(16位)来存储. 比起8位或16位整数,半精度浮点数具有动态范围高的优点:而与单精度浮点数相比,它能节省一半的储…
我们先介绍下pytorch中的cnn网络 学过深度卷积网络的应该都非常熟悉这张demo图(LeNet): 先不管怎么训练,我们必须先构建出一个CNN网络,很快我们写了一段关于这个LeNet的代码,并进行注释: # coding=utf-8 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Net(nn.Module): # 定义N…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51774966 当我们设计好网络结构后,在神经网络训练的过程中,迭代输出的log信息中,一般包括,迭代次数,训练损失代价,测试损失代价,测试精度等.本文提供一段示例,简单讲述如何绘制训练曲线(training curve). 首先看一段训练的log输出,网络结构参数的那段忽略,直接跳到训练迭代阶段: I0627 21:30:06.0043…
PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网络作为运行示例.该网络将有一个单一的隐藏层,并将使用梯度下降训练,通过最小化网络输出和真正结果的欧几里得距离,来拟合随机生成的数据. 2.张量 2.1 热身: Numpy 在介绍PyTorch之前,将首先使用numpy实现网络. Numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数.Nu…
论文:<Fully Convolutional Networks for Semantic Segmentation> 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据集制作 PascalVOC数据下载下来后,制作用以图像分割的图像数据集和标签数据集,LMDB或者LEVELDB格式. 最好resize一下(填充的方式). 1. 数据文件夹构成 包括原始图片和标签图片,如下.   然后,构建对应的lmdb文件.可以将所有图片按照4:1的比例分为train:val的比例.每个t…