描述 解析 二叉搜索树,其实就是节点n的左孩子所在的树,每个节点都小于节点n. 节点n的右孩子所在的树,每个节点都大于节点n. 定义子树的最大最小值 比如:左孩子要小于父节点:左孩子n的右孩子要大于n的父节点.以此类推. 中序遍历 中序遍历时,输出的值,和前一个值比较,如果大,就失败. 代码 /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNo…
题目:验证二叉搜索树 难度:Medium 题目内容: Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node co…
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys…
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST. Calling next() will return the next smallest number in the BST Note: next() and hasNext() should run in average O(1) time and uses O…
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys…
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys…
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys…
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys…
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST. Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than or equal to the nod…
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target. Note: Given target value is a floating point. You may assume k is always valid, that is: k ≤ total nodes. You are guaranteed to have onl…