SVM 核方法】的更多相关文章

在 SVM 中引入核方法便可使得 SVM 变为非线性分类器,给定非线性可分数据集 $\left \{ (x_i,y_i)\right\}_{i=1}^N$,如下图所示,此时找不到一个分类平面来将数据分开,核方法可以将数据投影到新空间,使得投影后的数据线性可分,下图给出一个 $\mathbb{R}^2\rightarrow \mathbb{R}^2$ 的映射,原空间为 $x=(x^{(1)},x^{(2)})$ ,新空间 为 $z = \phi(x) = \left \{ (x^{(1)})^2,…
    数据模型:并不是简单地二维数据,多个维度或者对象的数据聚合起来      {           persion1's attr1:value1,...,persion1's attrN:valueN,persion2's attr1:value1,...,persion2's attrN:value1,whetherSuccess:value      }   同一个问题:不同的分类方法的类比           决策树:存在多个数值型输入,且这些数值所呈现的关系并不简单,决策树往往不…
这一章主要解说Ng的机器学习中SVM的兴许内容.主要包括最优间隔分类器求解.核方法. 最优间隔分类器的求解 利用以一篇讲过的的原始对偶问题求解的思路,我们能够将相似思路运用到SVM的求解上来. 详细的分析例如以下: 对于SVM求解的问题: 我们把约束条件略微变形一下: 仅仅有函数间隔是1的点才干使上式取等号,也就是有意义的.例如以下图: 叉叉和圈圈分别代表正反例,能够看出,仅仅有落在边缘的点的α≠0,这些点才是支持向量.其它的点α=0,对切割超平面没有意义.上图的支持向量一共同拥有3个. 写出拉…
前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的.不过,由于是线性方法,所以对非线性的数据就没有办法处理了.例如图中的两类数据,分别分布为两个圆圈的形状,不论是任何高级的分类器,只要它是线性的,就没法处理,SVM 也不行.因为这样的数据本身就是线性不可分的. 对于这个数据集,我可以悄悄透露一下:我生成它的时候就是用两个半径不同的圆圈加上了少量的噪音得到的,所以,一个理想的分界应该是一个“圆圈”而不是一条线(超平面).如果用 X1 和 X2 来表示这个二维…
摘要: 本文主要针对于FCM算法在很大程度上局限于处理球星星团数据的不足,引入了核方法对算法进行优化.  与许多聚类算法一样,FCM选择欧氏距离作为样本点与相应聚类中心之间的非相似性指标,致使算法趋向于发现具有相近尺度和密度的球星簇.因此,FCM很大程度上局限于对球星星团的处理,不具有普遍性.联系到支持向量机中的核函数,可采用核方法将数据映射到高维特征空间进行特征提取从而进行聚类.现阶段,核方法已广泛应用于模糊聚类分析算法.核方法的应用目前已成为计算机智能方面的热点之一,对于核学习的深入研究具有…
参考文献: http://www.blogjava.net/zhenandaci/archive/2009/03/01/257237.html http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988406.html NG的SVM课件 台湾大学林轩田老师的视频课程 注意1:本文自然过渡并引出核函数的概念,比课件和其他教程上的说明更加让人理所当然地接受! 注意2:貌似对于SVM原问题求解,很多地方直接采用KKT条件求解.实际上,它也是通过求解…
支持向量机: Kernel by pluskid, on 2010-09-11, in Machine Learning     68 comments 本文是"支持向量机系列"的第三篇,參见本系列的其它文章. 前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的.只是,由于是线性方法,所以对非线性的数据就没有办法处理了. 比如图中的两类数据,分别分布为两个圆圈的形状,不论是不论什么高级的分类器.仅仅要它是线性的,就没法处理.SVM 也不行. 由于…
核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通常映射后的维度会更高),在映射之后的特征空间中,样本点就变得线性可分了. 核方法的示意图如下: 上图中左边表示的是原始特征空间,在原始特征空间中,我们无法用直线(平面)来将两类点分开,但是却可以用圆来进行分割.右边表示的通过对原始样本点进行映射(从二维映射到三维)得到的新的样本点.可以看到在新的特征…
今天整理资料时,发现了在学校时做的这个实验,当时整个过程过重偏向依赖分类器方面,而又很难对分类器性能进行一定程度的改良,所以最后没有选用这个方案,估计以后也不会接触这类机器学习的东西了,希望它对刚入门的人有点用. SVM比较适合高维数据的二分类,本来准备对语音特征直接用SVM进行二分类,但是发现样本数据比较多,训练的2天都没有出收敛,最后想用VQ聚类的方法先抽取出具有代表性的语音,但是用这些代表性的训练集训练SVM分类器,效果还可以,用了一个下午就收敛了.识别结果还行,比较差的情况下,也有80%…
在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 ϕ(⋅) 将原始数据进行映射,使得原来的非线性问题在映射之后的空间中变成线性的问题.然后我们利用核函数来简化计算,使得这样的方法在实际中变得可行.不过,从线性到非线性的推广我们并没有把 SVM 的式子从头推导一遍,而只是直接把最终得到的分类函数…