Hadoop YARN资源隔离技术】的更多相关文章

YARN对内存资源和CPU资源采用了不同的资源隔离方案.对于内存资源,它是一种限制性资源,它的量的大小直接决定应用程序的死活,因为应用程序到达内存限制,会发生OOM,就会被杀死.CPU资源一般用Cgroups进行资源控制,Cgroups控制资源测试可以参见这篇博文Cgroups控制cpu,内存,io示例,内存资源隔离除Cgroups之外提供了另外一个更灵活的方案,就是线程监控方案. 默认情况下YARN采用线程监控的方案控制内存使用,采用这种机制的原因有两点: 1.Java创建子进程采用了“for…
资源管理与调度系统-YARN资源隔离及以YARN为核心的生态系统 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是资源隔离 资源隔离是指为不同任务提供可独立使用的计算资源以避免它们互相干扰.当前存在很多资源隔离技术,比如硬件虚拟化,虚拟化,Cgroups,Linux Container等. YARN对内存资源和CPU资源采用了不同对资源隔离方案.对于内存资源,它是一种限制性资源,它的量的大小直接决定的应用程序的死活,为了能够更灵活地控制内存使用量,YARN提供了两种可…
作者 蒋彪,腾讯云高级工程师,10+年专注于操作系统相关技术,Linux内核资深发烧友.目前负责腾讯云原生OS的研发,以及OS/虚拟化的性能优化工作. 导语 混部,通常指在离线混部(也有离在线混部之说),意指通过将在线业务(通常为延迟敏感型高优先级任务)和离线任务(通常为 CPU 消耗型低优先级任务)同时混合部署在同一个节点上,以期提升节点的资源利用率.其中的关键难点在于底层资源隔离技术,严重依赖于 OS 内核,而现有的原生 Linux kernel 提供的资源隔离能力在面对混部需求时,再次显得…
注:本文以hadoop-2.5.0-cdh5.3.2为例进行说明.   Hadoop Yarn的资源隔离是指为运行着不同任务的“Container”提供可独立使用的计算资源,以避免它们之间相互干扰.目前支持两种类型的资源隔离:CPU和内存,对于这两种类型的资源,Yarn使用了不同的资源隔离方案.   对于CPU而言,它是一种“弹性”资源,使用量大小不会直接影响到应用程序的存亡,因此CPU的资源隔离方案采用了Linux Kernel提供的轻量级资源隔离技术Cgroup:对于内存而言,它是一种“限制…
一 概述         NodeManager是执行在单个节点上的代理,它管理Hadoop集群中单个计算节点,功能包含与ResourceManager保持通信,管理Container的生命周期.监控每一个Container的资源使用(内存.CPU等)情况.追踪节点健康状况.管理日志和不同应用程序用到的附属服务等.         NodeManager是YARN中单个节点的代理,它须要与应用程序的ApplicationMaster和集群管理者ResourceManager交互;它从Applic…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 一.背景情况 5月5日腾讯云安全曾针对攻击者利用Hadoop Yarn资源管理系统REST API未授权漏洞对服务器进行攻击,攻击者可以在未授权的情况下远程执行代码的安全问题进行预警,在预警的前后我们曾多次捕获相关的攻击案例,其中就包含利用该问题进行挖矿,我们针对其中一个案例进行分析并提供响应的安全建议和解决方案. 二. 漏洞说明 Hadoop是一个由Apache基金会所开发的分布式系统基础架构,YARN是hadoop系统上的资源统一管…
Yarn的产生 mapReduc1.0 1单点故障 2扩展效率低 3资源利用率高 降低运维成本 方便数据共享 多计算框架支持 MapReduce Spark Storm Yarn的架构图 Yarn模块介绍 ResourceManger 负责集群资源的统一管理和调度 处理客户端请求 启动/监控ApplicationMaster 监控NodeManager 资源的分配与调度 NodeManager 负责单点资源的管理和使用 处理来自ResourceManager的命令 处理来自Application…
大数据处理离不开hadoop集群的部署和管理,对于本来硬件资源就不多的创业团队来说,做好资源的共享和隔离是很有必要的,毕竟不像BAT那么豪,那么怎么样能把有限的节点同时分享给多组用户使用而且互不影响呢,我们来研究一下yarn多队列做资源隔离 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 CapacityScheduler 使用过第一代hadoop的同学应该比较熟悉mapred.job.map.capacity/mapred.job.reduce.capaci…
源调度和资源隔离是YARN作为一个资源管理系统,最重要和最基础的两个功能.资源调度由ResourceManager完成,而资源隔离由各个NodeManager实现,在文章“Hadoop YARN中内存和CPU两种资源的调度和隔离”中,我已经介绍了YARN的内存和CPU的资源隔离,本文将介绍YARN在资源隔离方面的一些进展. 当谈及到资源时,我们通常指内存,CPU和IO三种资源.默认情况下,YARN不会对任何资源进行隔离,当然,如果采用Java语言编写的程序,则会使用JVM内置的隔离机制为内存资源…
转自:https://m.aliyun.com/yunqi/articles/79700 背景 使用过hadoop的人基本都会考虑集群里面资源的调度和优先级的问题,假设你现在所在的公司有一个大hadoop的集群,有很多不同的业务组同时使用.但是A项目组经常做一些定时的BI报表,B项目组则经常使用一些软件做一些临时需求.那么他们肯定会遇到同时提交任务的场景,这个时候到底如何分配资源满足这两个任务呢?是先执行A的任务,再执行B的任务,还是同时跑两个? 目前一些使用EMR的大公司,会使用一个比较大的集…