python 回归分析】的更多相关文章

Python回归分析五部曲(一)—简单线性回归 https://blog.csdn.net/jacky_zhuyuanlu/article/details/78878405?ref=myread Python回归分析五部曲(二)—多重线性回归 https://blog.csdn.net/jacky_zhuyuanlu/article/details/78967647?utm_source=blogxgwz0 Python回归分析五部曲(三)—一元非线性回归 https://blog.csdn.n…
基础铺垫 多重线性回归(Multiple Linear Regression) 研究一个因变量与多个自变量间线性关系的方法 在实际工作中,因变量的变化往往受几个重要因素的影响,此时就需要用2个或2个以上的影响因素作为自变量来解释因变量的变化,这就是多重线性回归; 多重线性回归模型 1.模型 y=α+β1x1+β2x2+...+βnxn+e 数据分析部落公众号:shujudata 方程式中: y−因变量 xn−第n个自变量 α−常数项(回归直线在y轴上的截距) βn−第n个偏回归系数 e−随机误差…
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析(Regression Analysis) 研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量y与影响它的自变量 x_i(i=1,2,3- -)之间的回归模型,来预测因变量y的发展趋向. 回归分析的分类 线性回归分析 简单线性回归 多重线性回归 非线性回归分析 逻辑回归 神经网络 回归分…
(一)基础铺垫 一元非线性回归分析(Univariate Nonlinear Regression) 在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条曲线近似表示,则称为一元非线性回归分析. 一元二次方程: y=a2x2+a1x1+a0x0 一元三次方程: y=a3x3+a2x2+a1x1+a0x0 一元 n 次方程: y=anxn+......+a1x1+a0x0 (二)案例-金融场景为例 产品编号 手续费(%) 金融产品销售额 1 2.2 25.5 2 2.3 22.5 3…
一.线性回归 1 绘制散点图 import matplotlib.pyplot as plt x = [5,7,8,7,2,17,2,9,4,11,12,9,6] y = [99,86,87,88,111,86,103,87,94,78,77,85,86] plt.scatter(x, y) plt.show() 结果: 2 导入 scipy 并绘制线性回归线: import matplotlib.pyplot as plt from scipy import stats x = [5,7,8,…
假设原函数由一个三角函数和一个线性项组成 import numpy as np import matplotlib.pyplot as plt %matplotlib inline def f(x): return np.sin(x) + 0.5 * x x = np.linspace(-2 * np.pi, 2 * np.pi, 50) plt.plot(x, f(x), 'b') plt.grid(True) plt.xlabel('x') plt.ylabel('f(x)') 一.用回归方…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share http://blog.csdn.net/csqazwsxedc/article/details/51336322(转) # 一 个股与指数的回归…
Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力.而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法.Python具有Spark的API.需要注意的是,Spark中,所有数据的处理都是基于RDD的. 首先举一个聚类方面的详细应用例子Kmeans: 下面代码是一些基本步骤,包括外部数据,RDD预处理,训练模型,预测. #coding:utf-8 from numpy import array from math import sqrt from pyspark…
Refer:http://python.jobbole.com/81215/ 本文参考了博乐在线的这篇文章,在其基础上加了一些自己的理解.其原文是一篇英文的博客,讲的通俗易懂. 本文通过一个简单的例子:预测房价,来探讨怎么用python做一元线性回归分析. 1. 预测一下房价 房价是一个很火的话题,现在我们拿到一组数据,是房子的大小(平方英尺)和房价(美元)之间的对应关系,见下表(csv数据文件): 从中可以大致看出,房价和房子大小之间是有相关关系的,且可以大致看出来是线性相关关系.为了简单起见…
# -*- coding: utf-8 -*-"""Created on Sat Aug 18 16:23:17 2018 @author: acadsoc"""import scipyimport numpy as npimport pandas as pdimport matplotlibimport matplotlib.pyplot as pltfrom sklearn.ensemble import RandomForestRegres…
# -*- coding: utf-8 -*-"""Created on Sat Aug 18 11:08:38 2018 @author: acadsoc""" import pandas as pdimport numpy as npimport matplotlibimport matplotlib.pyplot as pltfrom pyecharts import Bar, Line, Page, Overlapimport stats…
接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集和测试集. 2.使用一层隐藏层的简单网络,试下来用当前这组超参数收敛较快,准确率也可以. 3.激活函数使用relu来引入非线性因子. 4.原本想使用如下方式来动态更新lr,但是尝试下来效果不明显,就索性不要了. def learning_rate(epoch): if epoch < 200: re…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来处理.     常见的词汇:机器学习.数据建模.关联分析.算法优化等等,而这些种种又都是基于规律的深度开发(也难怪道德经的首篇就提出道可道非常道,名可名非常名的说法),不管是线性还是非线性,总之存在关联关系,而我们最好理解的就是线性关系,简单的用个函数就能解决.比如我们生活中应用的比较的归纳总结,其…
回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被…
说明:此文的第一部分参考了这里 用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子.scipy.stats.linregress例子.pandas.ols例子等. 不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用. 一.二维直线的例子 预备知识:线性方程\(y = a * x + b\) 表示平面一直线 下面的例子中,我们根据房屋面积.房屋价格的历史数据,建立线性回归模型. 然…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 ==============================================…
Hi Pythonistas! 测试和调试 Testing & Debugging 框架及Web Frameworks & Web 并发 Concurrency 任务调度 Job Schedulers 实用工具 Utilities & Tools 科学科学及可视化 Data Science & Visualization 编辑器及其改善 Editors & Editor Enhancements 持续交付 Devops Git Mail & Chat 音频和…
2013流行Python项目汇总 转自:http://www.kankanews.com/ICkengine/archives/102963.shtml Python作为程序员的宠儿,越来越得到人们的关注,使用Python进行应用程序开发的越来也多.那么,在2013年有哪些流行的Python项目呢?下面,我们一起来看下. 一.测试和调试 python_koans:Python Koans 算 “Ruby Koans” 的一部分,作为交互式教程,可以学习TDD 技巧. sure:Sure 是最适合…
摘要 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果. 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着以豆瓣影评为例介绍文本数据的爬取,最后使用文本分类的技术以一种机器学习的方式进行情感分析.由于内容覆盖面巨大,无法详细道尽,这篇文章旨在给那些对相关领域只有少量或者没有接触的人一个认知的窗口,希望激发读者自行探索的兴趣. 以下的样本代码用Pyhton写成,主要使用了scrapy, sklearn两个…
年有哪些流行的Python项目呢?下面,我们一起来看下. 一.测试和调试 python_koans :Python Koans 算 “Ruby Koans” 的一部分,作为交互式教程,可以学习 TDD  技巧. sure :Sure 是最适合自动化测试的 Python 工具,包含流利的断言.深度选择器等等特性. responses :用 responses 能令测试更加轻松,这是一个可以伪装各种请求的库. boom :Boom!  Apache Bench 的替代品.作为一个命令行工具,Boom…
Python:渗透测试开源项目[源码值得精读] sql注入工具:sqlmap DNS安全监测:DNSRecon 暴力破解测试工具:patator XSS漏洞利用工具:XSSer Web服务器压力测试工具:HULK SSL安全扫描器:SSLyze 网络 Scapy: send, sniff and dissect and forge network packets. Usable interactively or as a library pypcap, Pcapy and pylibpcap:…
近年来,金融领域的量化分析越来越受到理论界与实务界的重视,量化分析的技术也取得了较大的进展,成为备受关注的一个热点领域.所谓金融量化,就是将金融分析理论与计算机编程技术相结合,更为有效的利用现代计算技术实现准确的金融资产定价以及交易机会的发现.量化分析目前已经涉及到金融领域的方方面面,包括基础和衍生金融资产定价.风险管理.量化投资等.随着大数据技术的发展,量化分析还逐步与大数据结合在一起,对海量金融数据实现有效和快速的运算与处理. 在量化金融的时代,选用一种合适的编程语言对于金融模型的实现是至关…
引入 一个机器能够依据照片来辨别鲜花的品种吗?在机器学习角度,这事实上是一个分类问题.即机器依据不同品种鲜花的数据进行学习.使其能够对未标记的測试图片数据进行分类. 这一小节.我们还是从scikit-learn出发,理解主要的分类原则,多动手实践. Iris数据集 Iris flower数据集是1936年由Sir Ronald Fisher引入的经典多维数据集.能够作为判别分析(discriminant analysis)的样本.该数据集包括Iris花的三个品种(Iris setosa, Iri…
学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分析相关python库的介绍(前言1~4摘抄自<利用python进行数据分析>) 1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘上…
注:这是一个横跨数年的任务,标题也可以叫做“从To Do List上划掉学习统计学”.在几年前为p值而苦恼的时候,还不知道Python是什么:后来接触过Python,就喜欢上了这门语言.统计作为数据科学的基础,想要从事这方面的工作,这始终是一个绕不过去的槛. 其实从中学就开始学习统计学了,最早的写"正"字唱票(相当于寻找众数),就是一种统计分析的过程.还有画直方图,求平均值,找中位数等.自己在学校里并没有完整系统的学习过概率论和数理统计,直到在工作中用到,才从最初的印象中,逐渐把这门学…
项目内容 本案例选择>> 商品类目:沙发: 数量:共100页  4400个商品: 筛选条件:天猫.销量从高到低.价格500元以上. 项目目的 1. 对商品标题进行文本分析 词云可视化 2. 不同关键词word对应的sales的统计分析 3. 商品的价格分布情况分析 4. 商品的销量分布情况分析 5. 不同价格区间的商品的平均销量分布 6. 商品价格对销量的影响分析 7. 商品价格对销售额的影响分析 8. 不同省份或城市的商品数量分布 9.不同省份的商品平均销量分布 注:本项目仅以以上几项分析为…
http://www.newsmth.NET/nForum/#!article/Python/128763 最近程序化交易很热,量化也是我很感兴趣的一块. 国内量化交易的平台有几家,我个人比较喜欢用的是JoinQuant,里面有篇干货贴分享给大家,希望对各位有帮助.       =========================== 量化交易策略 ===========================   价值投资 成长股内在价值投资:http://www.joinquant.com/post/…
Python之所以如此流行,原因在于它的数据分析和挖掘方面表现出的高性能,而我们前面介绍的Python大都集中在各个子功能(如科学计算.矢量计算.可视化等),其目的在于引出最终的数据分析和数据挖掘功能,以便辅助我们的科学研究和应用问题的解决. 线性回归模型 回归是统计学中最有力的工具之一.而对回归研究的不断升温在于人们执着于对未来的预测.回归反映了系统的随机运动总是于趋向于其整体运动规律的趋势.在数学上来说,就是根据系统的总体静态观测值,通过算法取出随机性的噪声,发现系统整体运动规律的过程. 回…
0.SQL数据库 1. python基础知识 2. 重点工具掌握:数据解析核心技巧 - Numpy| Pandas| Matplotlib 3. 数据特征分析:分布| 对比| 统计| 帕累托| 正态| 相关性分析 4. 数据处理:缺失值| 异常值| 数据归一| 数据连续属性离散化 5. 数学建模:监督学习(回归分析.分类分析).非监督学习(聚类分析| Kmeans聚类).随机数 6. Python图表数据可视化Seaborn 7. Python交互图表可视化Bokeh 8. 空间数据可视化 9.…