统计学习:线性支持向量机(SVM)】的更多相关文章

学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们要对上一章的算法做出一定的修改,即放宽条件,将原始的硬间隔最大化转换为软间隔最大化. 给定训练集 \[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# <补充>支持向量机方法的三要素(若…
支持向量机(support vector machines, SVM)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器:支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问.支持向量机的学习算法是求解凸二次规划的最优化算法. 支持向量机学习模型:线性可分支持向量机(linear support vec…
原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要比较强的凸优化基础,使得有些初学者虽下大量时间和精力研读,但仍一头雾水,最终对其望而却步.本文旨在从零构建支持向量机,涵盖从思想到形式化,再简化,最后实现的完整过程,并展现其完整思想脉络和所有公式推导细节.本文力图做到逻辑清晰而删繁就简,避免引入不必要的概念.记号等.此外,本文并不需要读者有凸优化的…
学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们要对上一章的算法做出一定的修改,即放宽条件,将原始的硬间隔最大化转换为软间隔最大化. 给定训练集 \[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\…
前言: 经历过文本的特征提取,使用LibSvm工具包进行了测试,Svm算法的效果还是很好的.于是开始逐一的去了解SVM的原理. SVM 是在建立在结构风险最小化和VC维理论的基础上.所以这篇只介绍关于SVM的理论基础.参考this paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重…
1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督式学习模型及相关的学习算法:在给定的一组训练实例中,每个训练实例会被标记其属性类别(两个类别中的一个),是非概率的二元线性分类器. SVM模型是将采用尽可能宽的.明显的间隔将实例分开,使得实例分属不同的空间:然后将新的实例映射到某一空间,基于新的实例所属空间来预测其类别. SVM 除了可进行线性分类…
线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: 通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数: *什么是间隔最大化呢? 首先需要定义间隔, 下面介绍了函数间隔和几何间隔,几何间隔可以理解为训练点到超平面的距离, 二维中就是点到直线的距离,我们要做的就是最小化几何间隔. 函数间隔和几何间隔 函数间隔 给定训练数据…
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原成二维: 刚利用“开心”“不开心”的重量差实现将二维数据变成三维的过程,称为将数据投射至高维空间,这正是核函数的功能 在SVM中,用的最普遍的两种把数据投射到高维空间的方法分别是多项式内核.径向基内核(RFB) 多项式内核: 通过把样本原始特征进行乘方来把数据投射到高维空间[如特征1^2,特征2^3…
支持向量机对线性不可分数据的处理 目标 本文档尝试解答如下问题: 在训练数据线性不可分时,如何定义此情形下支持向量机的最优化问题. 如何设置 CvSVMParams 中的参数来解决此类问题. 动机 为什么需要将支持向量机优化问题扩展到线性不可分的情形? 在多数计算机视觉运用中,我们需要的不仅仅是一个简单的SVM线性分类器, 我们需要更加强大的工具来解决 训练数据无法用一个超平面分割 的情形. 我们以人脸识别来做一个例子,训练数据包含一组人脸图像和一组非人脸图像(除了人脸之外的任何物体). 这些训…