[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明 答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 m…
十年OI一场空,忘记取模见祖宗 题目: 求$$\sum_{i=1}^{n}\sum_{j=1}^{m} (n \bmod i)(m \bmod i)$$ (其中i,j不相等) 暴力拆式子: $$ANS=\sum_{i=1}^{n}\sum_{j=1}^{m} (n- \left \lfloor \frac{n}{i} \right \rfloor*i)(m- \left \lfloor \frac{m}{i} \right \rfloor*i)-\sum_{i=1}^{min(n,m)} (n-…
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 19940417的值 样例输入 3 4 样例输出 1 题解 数论+分块 由于直接求i≠j的情况比较难搞,所以我们可以先求出i可以等于j的和,然后再减去i等于j时的情况. 也就是求∑∑((n mod i)*(m mod j))-∑((n mod i)*(m mod i)). 然后再根据乘法分配律转化为∑(n mod i)*∑…
数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not = j}^{m}(n\ mod\ i)(m\ mod\ j)$ Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明 答案为(3 mod 1)*(4 mod 2)+(3 mod 1)…
手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2956 题目大意: 求\[\sum^{n}_{i=1} \sum^{m}_{j=1, j\ne i} (n \mod i)(m \mod j)\]对19940417取模的值. 思路分析: 从heheda神犇…
第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samuel II”进行数学研究. 小联最近在研究和约数有关的问题,他统计每个正数N的约数的个数,并以f(N)来表示.例如12的约数有1.2.3.4.6.12.因此f(12)=6.下表给出了一些f(N)的取值: f(n)表示n的约数个数,现在给出n,要求求…
题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define int long long #define LL long long #define ull unsigned…
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明 答案为(3 mod 1)(4 mod 2)+(3 mod 1) (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2)…
一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导出来,但是,码力不够,比如说在乘积的时候,因为输入时候的$n$和$m$没有注意,一直用的$int$类型的,导致中间结果早就爆了,自己却浑然不知. 还有一个细节就是题目给的模数不是质数,所以求逆元的时候需要使用扩展欧几里得进行求解逆元. 三.AC代码 1 #include <bits/stdc++.h…
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ「n/i」(i=1~n),「」表示向下取整 由于「n/i」在某段区间内都有相同的值,所以可以分块算,复杂度O( sqrt(n) ) code: ll res=; ,r;l<=n;l=r+){ r=n/(n/l): res=res+(r-l+)*(n/l);}return res; 当mod是素数时,…