pandas DataFrame 数据处理常用操作】的更多相关文章

Xgboost调参: https://wuhuhu800.github.io/2018/02/28/XGboost_param_share/ https://blog.csdn.net/hx2017/article/details/78064362 pandas DataFrame中的空值处理: https://blog.csdn.net/yuanxiang01/article/details/78738812 pandas的DataFrame.Series删除列: https://blog.c…
scala> import org.apache.spark.sql.SparkSession import org.apache.spark.sql.SparkSession scala> val spark=SparkSession.builder().getOrCreate() spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@2bdab835 //使支持RDDs转换为DataFram…
前言:近段时间学习R语言用到最多的数据格式就是data.frame,现对data.frame常用操作进行总结,其中函数大部分来自dplyr包,该包由Hadley Wickham所作,主要用于数据的清洗和整理. 一.创建 data.frame创建较为容易,调用data.frame函数即可.本文创建一个关于学生成绩的数据框,接下来大部分操作都对该数据框进行,其中学生成绩随机产生 > library(dplyr) #导入dplyr包 > options(digits = 0) #保留整数 >…
今天是pandas数据处理第8篇文章,我们一起来聊聊dataframe的合并. 常见的数据合并操作主要有两种,第一种是我们新生成了新的特征,想要把它和旧的特征合并在一起.第二种是我们新获取了一份数据集,想要扩充旧的数据集.这两种合并操作在我们日常的工作当中非常寻常,那么究竟应该怎么操作呢?让我们一个一个来看. merge 首先我们来看dataframe当中的merge操作,merge操作类似于数据库当中两张表的join,可以通过一个或者多个key将多个dataframe链接起来. 我们首先来创建…
1.导入数据 df = pd.read_csv( # 该参数为数据在电脑中的路径,可以不填写 filepath_or_buffer='/Users/Weidu/Desktop/sz000002.csv', # 该参数代表数据的分隔符,csv文件默认是逗号.其他常见的是'\t' sep=',', # 该参数代表跳过数据文件的的第1行不读入 skiprows=1, # nrows,只读取前n行数据,若不指定,读入全部的数据 nrows=15, # 将指定列的数据识别为日期格式.若不指定,时间数据将会…
DataFrame的这些操作和Series很相似,这里简单介绍一下. 一,应用和应用映射 apply()函数对每个轴应用一个函数,applymap()函数对每个元素应用一个函数: DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds) DataFrame.applymap(self, func) 定义一个函数fun,使用apply()函数把fun应用到由DataFrame对象的列构成的一维…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构--DataFrame. 上一篇文章当中我们介绍了Series的用法,也提到了Series相当于一个一维的数组,只是pandas为我们封装了许多方便好用的api.而DataFrame可以简单了理解成Series构成的dict,这样就将数据拼接成了二维的表格.并且为我们提供了许多表级别数据处理以及批量数据处理的接口,大大降低了数据处理的难度. 创建D…
目录 数据清洗的常用工具--Pandas 数据清洗的常用工具 Pandas常用数据结构series和方法 Pandas常用数据结构dataframe和方法 常用方法 数据清洗的常用工具--Pandas 现实中,数据并非完美的,需要进行清洗才能进行后面的数据分析 数据清洗是整个数据分析项目中最消耗时间的一步 数据的质量最终决定了数据分析的准确性 数据清洗是唯一可以提高数据质量的方法,使得数据分析结果也变得更可靠 数据清洗的常用工具 目前在Python中,numpy和pandas是最主流的工具 Nu…
spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持.   在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库.   首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数.   而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中.   1.union.unionAll.unionByName,row 合并(上下拼接) data_all = data_n…
1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a','b','c','d']} >>> df = pd.DataFrame(dict1) >>> df col1 col2 0 1 a 1 2 b 2 5 c 3 7 d 2. 从列表创建Dataframe (先把列表转化为字典,再把字典转化为DataFrame) >…