欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 前面机器学习方法(四)决策树讲了经典的决策树算法,我们讲到决策树算法很容易过拟合,因为它是通过最佳策略来进行属性分裂的,这样往往容易在train data上效果好,但是在test data上效果不好.随机森林random forest算法,本质上是一种ensemble的方法,可以有效的降低过拟合,本文将具体讲解. Background…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share Toby,项目合作QQ:231469242 随机森林就是由多个决策树组合而成的投票机制. 理解随机森林,要先了解决策树 随机森林是一个集成机器学习算法…
1.什么是随机采样? Bagging可以简单的理解为:放回抽样,多数表决(分类)或简单平均(回归): Bagging的弱学习器之间没有boosting那样的联系,不存在强依赖关系,基学习器之间属于并列生成.它的特点在“随机采样”. 随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回.也就是说,之前采集到的样本在放回后有可能继续被采集到.对于我们的Bagging算法,一般会随机采集和训练集样本数m一样个数的样本.这样得到的采样集和训练集样本的个…
引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法: 前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random Forest) 随机森林在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择). 简单来说,随机森林就是对决策树的集成,但…
随机森林是一个最近比较火的算法 它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多)的数据,并且不用做特征选择 在训练完后,它能够给出哪些feature比较重要 在创建随机森林的时候,对generlization error使用的是无偏估计 训练速度快 在训练过程中,能够检测到feature间的互相影响 容易做成并行化方法 实现比较简单 随机森林思想 用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵…
在得出random forest 模型后,评估参数重要性 importance() 示例如下 特征重要性评价标准 %IncMSE 是 increase in MSE.就是对每一个变量 比如 X1 随机赋值, 如果 X1重要的话, 预测的误差会增大,所以 误差的增加就等同于准确性的减少,所以MeanDecreaseAccuracy 是一个概念的. IncNodePurity 也是一样, 如果是回归的话, node purity 其实就是 RSS(残差平方和residual sum of squar…
前言 随机森林非常像<机器学习实践>里面提到过的那个AdaBoost算法,但区别在于它没有迭代,还有就是森林里的树长度不限制. 因为它是没有迭代过程的,不像AdaBoost那样需要迭代,不断更新每个样本以及子分类器的权重.因此模型相对简单点,不容易出现过拟合. 下面先来讲讲它的具体框架流程. 框架流程 随机森林可以理解为Cart树森林,它是由多个Cart树分类器构成的集成学习模式.其中每个Cart树可以理解为一个议员,它从样本集里面随机有放回的抽取一部分进行训练,这样,多个树分类器就构成了一个…
决策树介绍:http://www.cnblogs.com/huangshiyu13/p/6126137.html 一些boosting的算法:http://www.cnblogs.com/huangshiyu13/p/6134329.html…
[基础算法] Random Forests 2011 年 8 月 9 日 Random Forest(s),随机森林,又叫Random Trees[2][3],是一种由多棵决策树组合而成的联合预测模型,天然可以作为快速且有效的多类分类模型.如下图所示,RF中的每一棵决策树由众多split和node组成:split通过输入的test取值指引输出的走向(左或右):node为叶节点,决定单棵决策树的最终输出,在分类问题中为类属的概率分布或最大概率类属,在回归问题中为函数取值.整个RT的输出由众多决策树…
目录 Bagging算法和随机森林 一.Bagging算法和随机森林学习目标 二.Bagging算法原理回顾 三.Bagging算法流程 3.1 输入 3.2 输出 3.3 流程 四.随机森林详解 4.1 随机森林和Bagging算法区别 五.随机森林拓展 5.1 Extra Trees 5.2 Totally Random Trees Embedding 5.3 Isolation Forest 六.随机森林流程 6.1 输入 6.2 输出 6.3 流程 七.随机森林优缺点 7.1 优点 7.…