Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypothesis):$$h_\theta(x) = g(\theta^Tx)$$ $$g(z) = \frac{1}{1+e^{-z}}$$ 其中g(z)称为sigmoid函数,其函数图象如下图所示,可以看出预测值$y$的取值范围是(0, 1),这样对于 $h_\theta(x) \geq 0.5$, 模…
网易公开课,第3,4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面讨论了线性回归问题, 符合高斯分布,使用最小二乘来作为损失函数 下面继续讨论分类问题,分类问题和回归问题不同在于Y的取值是离散的 我们先讨论最简单的binary classification,即Y的取值只有0和1 分类问题一般不会使用回归模型,因为回归模型是输出是连续的,而分类问题需要的输出是离散的 但是一定要用也不是不可以,比如这里继续使用线性回归模型,但是…
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/variance tradeoff 还是用这组图,学习算法追求的是generalization error(对未知数据的预测误差),而不是training error(只是对训练集) 最左边,underfit,我们说这种学习算法有较大的bias Informally, we define the bia…
网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf   Model Selection 首先需要解决的问题是,模型选择问题,如何来平衡bais和variance来自动选择模型?比如对于多项式分类,如何决定阶数k,对于locally weighted regression如何决定窗口大小,对于SVM如何决定参数C For instance, we might be using a polynomial regre…
动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网络如下图所示,每一个圆圈表示一个神经元,每个神经元接收上一层神经元的输出作为其输入,同时其输出信号到下一层,其中每一层的第一个神经元称为bias unit,它是额外加入的其值为1,通常用+1表示,下图用虚线画出. 符号说明: $a_i^{(j)}$表示第j层网络的第i个神经元,例如下图$a_1^{(…
网易公开课,第5课 notes,http://cs229.stanford.edu/notes/cs229-notes2.pdf 学习算法有两种,一种是前面一直看到的,直接对p(y|x; θ)进行建模,比如前面说的线性回归或逻辑回归,这种称为判别学习算法(discriminative learning algorithms) 另外一种思路,就是这里要谈的,称为生成学习算法(generative learning algorithms),区别在于不会直接对p(y|x; θ)进行建模,而是对p(x|…
网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回归,符合伯努利分布 也发现他们有些相似的地方,其实这些方法都是一个更广泛的模型族的特例,这个模型族称为,广义线性模型(Generalized Linear Models,GLMs) The exponential family 为了介绍GLMs,先需要介绍指数族分布(exponential fami…
网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考   先继续前面对线性分类器的讨论, 通过机器学习算法找到的线性分类的线,不是唯一的,对于一个训练集一般都会有很多线可以把两类分开,这里的问题是我们需要找到best的那条线 首先需要定义Margin, 直观上来讲,best的那条线,应该是在可以正确分类的前提下,离所有的样本点越远越好,why? 因为越靠近分类…
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Components Analysis (PCA), 比Factor Analysis更为直接,计算也简单些 参考,A Tutorial on Principal Component Analysis, Jonathon Shlens   主成分分析基于, 在现实中,对于高维的数据,其中有很多维都是扰动噪音,…
网易公开课,第13,14课 notes,9 本质上因子分析是一种降维算法 参考,http://www.douban.com/note/225942377/,浅谈主成分分析和因子分析 把大量的原始变量,浓缩成少数几个因子变量 原始变量,代表浅层的表面现象,所以一定是很多和繁杂的 而因子变量,是代表深层的本质,因,是无法直接观察到的 所以因子分析,就是拨开现象发现本质的过程...很牛逼的感觉 举个例子,观察一个学生,你可以统计到很多原始变量, 代数,几何,语文,英语各科的成绩,每天作业时间,每天笔记…