uva_12535 - Probability Through Experiments】的更多相关文章

题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=&problem=3980&mosmsg=Submission+received+with+ID+13299007 题解:看这篇博文:http://blog.csdn.net/tri_integral/article/details/9772243 #include&…
We start with the fuzzy binomial. Then we discuss the fuzzy Poisson probability mass function. Fuzzy Binomial Let $E$ be a non-empty, proper subset of $X=\{x_1,x_2,x_3,...,x_n\}$. Let $P(E)=p$ so that $P(E^{'})=1-p$ where $p\in (0,1)$. Suppose we hav…
Lecture note 5: word2vec + manage experiments Word2vec Most of you are probably already familiar with word embedding and understand the importance of a model like word2vec. For those who aren't, Stanford CS 224N's lecture on word vectors is a great r…
[BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面. 现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少. Input 第一行一个正整数t,…
Let $X=\{x_1,x_2,...,x_n\}$ be a finite set and let $P$ be a probability function defined on all subsets of $X$ with $P(\{x_i\})=a_i,~1\leq i \geq n,~0<a_i<1$ for i and $\sum^{n}_{i=1}=1$. $X$ together with $P$ is a discrete (finite) probability dis…
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\pi}\sigma}e^{-{1\over2}{(x-\mu)^2\over\sigma^2}}$$ The cumulative distribution function is defined by $$F(x; \mu, \sigma) = \Phi\left({x-\mu\over\sigma}\ri…
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \alpha, \beta) = \begin{cases}{1\over\beta-\alpha} & \mbox{if}\ \alpha < x < \beta\\ 0 & \mbox{otherwise} \end{cases} $$ The cumulative distribu…
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \begin{cases}\lambda e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$ The exponential cumulative distribution function (CDF) is $$F(x; \lambda) =…
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) from an urn containing $N$ balls, of which $m$ are white and $N-m$ are black. If we let $X$ denote the number of white balls selected, then $$f(x; N, m,…
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called "success" and "failure". In each trial the probability of success is $p$ and of failure is $(1-p)$. We are obs…