Persona5 is a famous video game. In the game, you are going to build relationship with your friends. You have NN friends and each friends have his upper bound of relationship with you. Let's consider the i^{th}ith friend has the upper bound U_iUi​. A…
/* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这些素数去筛[L,R]之间的合数即可 */ #include<iostream> #include<cstring> #include<cstdio> #include<cmath> using namespace std; #define ll long lon…
实际题目 本题要求实现一个打印非负整数阶乘的函数. 函数接口定义: void Print_Factorial ( const int N ); 其中N是用户传入的参数,其值不超过1000.如果N是非负整数,则该函数必须在一行中打印出N!的值,否则打印“Invalid input”. 裁判测试程序样例: #include <stdio.h> void Print_Factorial ( const int N ); int main() { int N; scanf("%d"…
面试的一道题目,实现int随机数的阶乘.这道题就是考察你考没考虑大数问题,如何避免它. 我能想到的就是用数组去实现,然后写了一下代码.但是当i的值很大,接近Max_value时的情况还没有考虑到. 直接看代码:mul进行数组每一位的阶乘,carry()用来对数组的每一位进位,pos记录当前的数组有效位置.这道题还是用ArrayList写比较好,免得浪费空间(有空在更新). public class BigNumMul { public static void main(String args[]…
sdut oj 简单n! Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 给定一个数n(0 <= n <= 150), 求0到n中所有数的阶乘. 输入 题目有多组数据,处理到文件结尾.输入一个数n. 输出 输出阶乘,形式如:4! = 24.每组数据输出后跟一个空行. 示例输入 1 4 示例输出 0! = 1 1! = 1 0! = 1 1! = 1 2! = 2 3! = 6 4! = 24 提示  代码: #include…
1057 N的阶乘 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N求N的阶乘的准确值.   Input 输入N(1 <= N <= 10000) Output 输出N的阶乘 Input示例 5 Output示例 120 题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1057 分析:学了简单的Java,就来体验了一波Java的爽感,Java大法真的好啊! 下面给出AC代码…
首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求2^(n-1). 然鹅我们并不能高兴地过早.因为n的数量级竟然到了丧心病狂的1e100000.连高精度都救不了它. 费马小定理 费马小定理有两种形式:  $a^{p-1}$≡1($mod$ $p$)   与 $a^p$≡$a$($mod$ $p$). 第二种形式更为通用,是因为第一种形式不能涵盖“$…
Welcome to the 2017 ACM-ICPC Asia Nanning Regional Contest.Here is a breaking news. Now you have a chance to meet alone with the Asia Director through a game.All boys and girls who chase their dreams have to stand in a line. They are given the number…
\(e=lim_{n \to \infty}e_{n}(1+\frac{1}{n})^n\\\) \(=\lim_{n \to \infty}(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot+...\frac{1}{n!})\) \(\lim_{n \to \infty}S_{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot+\cdot+\frac{1}{n!}=e\) 因为两个数列有相同的极限e,…
Catalan数 卡塔兰数是组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名.历史上,清代数学家明安图(1692年-1763年)在其<割圜密率捷法>最早用到“卡塔兰数”,远远早于卡塔兰.有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”.卡塔兰数的一般公式为 C(2n,n)/(n+1). 性质: 令h(0)=1,h(1)=1,卡塔兰数满足递归式: h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h…