word2vec之tensorflow(skip-gram)实现】的更多相关文章

接昨天的博客,这篇随笔将会对本人运行Word2Vec算法时在Gensim以及Tensorflow的不同版本下的运行结果对比.在运行中,参数的调节以及迭代的决定本人并没有很好的经验,所以希望在展出运行的参数以及结果的同时大家可以批评指正,多谢大家的支持! 对比背景: 对比实验所运用的corpus全部都是可免费下载的text8.txt.下载点这里.在训练时,word embedding的维度被调节为200,除了word2vec_basic.py版本的step size为600001外,其余均为15个…
关于word2vec的理解,推荐文章https://www.cnblogs.com/guoyaohua/p/9240336.html 代码参考https://github.com/eecrazy/word2vec_chinese_annotation 我在其基础上修改了错误的部分,并添加了一些注释. 代码在jupyter notebook下运行. from __future__ import print_function #表示不管哪个python版本,使用最新的print语法 import c…
workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_body) t.start() workers.append(t)         Word2vec.py使用了多线程 一般认为python多线程其实是单线程 由于python的设计 GPL 内存不是现成安全的 但是这里由于内部是调用c++代码 所以还是能起到多线程作用     而 Word2vec…
About this Course This course will teach you how to build models for natural language, audio, and other sequence data. Thanks to deep learning, sequence algorithms are working far better than just two years ago, and this is enabling numerous exciting…
简单demo的代码路径在tensorflow\tensorflow\g3doc\tutorials\word2vec\word2vec_basic.py Sikp gram方式的model思路 http://tensorflow.org/tutorials/word2vec/index.md 另外可以参考cs224d课程的课件.     窗口设置为左右1个词 对应skip gram模型 就是一个单词预测其周围单词(cbow模型是 输入一系列context词,预测一个中心词)     Quick…
本篇也同步笔者另一博客上(https://blog.csdn.net/qq_37608890/article/details/81530542) 一.概述 在上一篇中,我们介绍了Word2Vec即词向量,对于Word Embeddings即词嵌入有了些基础,同时也阐述了Word2Vec算法的两个常见模型 :Skip-Gram模型和CBOW模型,本篇会对两种算法做出比较分析并给出其扩展模型-GloVe模型. 首先,我们将比较下原Skip-gram算法和优化后的新Skip-gram算法情况.对比下S…
利用 TensorFlow 入门 Word2Vec 原创 2017-10-14 chen_h coderpai 博客地址:http://www.jianshu.com/p/4e16ae0aad25 或者点击阅读原文 我认为学习算法的最好方法就是尝试去实现它,因此这个教程我们就来学习如何利用 TensorFlow 来实现词嵌入. 这篇文章我们不会去过多的介绍一些词向量的内容,所以很多 king - man - woman - queue 的例子会被省去,直接进入编码实践过程. 我们如何设计这些词嵌…
考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度计算                 关于线性和非线性的隐层 非线性隐层使得网络可以计算更加复杂的函数 线性隐层不能增强网络的表述能力,它们被用来做降维,减少训练需要的参数数目,这在nlp相关的模型中 经常用到(embedding vector)     一个back prop的例子        …
前言: 作为一个深度学习的重度狂热者,在学习了各项理论后一直想通过项目练手来学习深度学习的框架以及结构用在实战中的知识.心愿是好的,但机会却不好找.最近刚好有个项目,借此机会练手的过程中,我发现其实各大机器学习以及tensorflow框架群里的同学们也有类似的问题.于是希望借项目之手分享一点本人运行过程中的理解以及经验,希望在有益大家工作的基础上抛砖引玉,得到行业内各位专业人士的批评指点,多谢大家支持! 第一章博客我将会分为两个部分,这一部分将讲述Word2Vec在tensorflow中官方提供…
摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 Word2Vec是一个可以将语言中的字词转换为向量表达(Vector Respresentations)的模型,Word2vec可以将字词转为连续值的向量表达,并且其中意义相近的词将被映射到向量空间中相近的位置.其主要依赖的假设是Distributional Hypothesis,即在相同语境中出现的词其语义也相近.Word2vec主要分为CBOW(Continu…