YARN应用场景、原理与资源调度】的更多相关文章

Spark基本工作流程及YARN cluster模式原理 转载请注明出处:http://www.cnblogs.com/BYRans/ Spark基本工作流程 相关术语解释 Spark应用程序相关的几个术语: Worker:集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点.在Spark on Yarn模式中指的就是NodeManager节点: Executor:Application运行在Worker 节点上的一个进程,该进程负责运行Task,并且…
1.Hadoop YARN产生背景 源于MapReduce1.0 运维成本 如果采用“一个框架一个集群”的模式,则可能需要多个管理员管理这些集群,进而增加运维成本,而共享模式通常需要少数管理员即可完成多个框架的统一管理. 数据共享 随着数据量的暴增,跨集群间的数据移动不仅需花费更长的时间,且硬件成本也会大大增加,而共享集群模式可让多种框架共享数据和硬件资源,将大大减小数据移动带来的成本. 直接源于MRv1在几个方面的缺陷: 扩展性受限 单点故障 难以支持MR之外的计算 多计算框架各自为战,…
1.YARN 是什么? 从业界使用分布式系统的变化趋势和 hadoop 框架的长远发展来看,MapReduce的 JobTracker/TaskTracker 机制需要大规模的调整来修复它在可扩展性,内存消耗,线程模型,可靠性和性能上的缺陷.在过去的几年中,hadoop 开发团队做了一些 bug 的修复,但是这些修复的成本越来越高,这表明对原框架做出改变的难度越来越大.为从根本上解决旧MapReduce框架的性能瓶颈,促进 Hadoop 框架的更长远发展,从 0.23.0 版本开始,Hadoop…
一.Mapreduce1 图1  MR1工作原理图 工作流程主要分为以下6个步骤: 1 作业的提交 1)客户端向jobtracker请求一个新的作业ID(通过JobTracker的getNewJobId()方法获取,见第2步 2)计算作业的输入分片,将运行作业所需要的资源(包括jar文件.配置文件和计算得到的输入分片)复制到一个以ID命名的jobtracker的文件系统中(HDFS),见第3步 3)告知jobtracker作业准备执行,见第4步 2 作业的初始化 4)JobTracker收到对其…
服务功能 ResouceManager:     1.处理客户端的请求     2.启动和监控ApplicationMaster     3.监控nodemanager     4.资源的分配和调度 Nodemanager     1.处理单个节点的资源管理     2.处理来自ResouceManager的命令     3.处理来自ApplicationMaster的命令 ApplicationMaser     1.为应用程序申请资源,并分配给内部任务     2.任务的监控和容错 Cont…
Map Reduce和YARN技术原理 学习目标 熟悉MapReduce和YARN是什么 掌握MapReduce使用的场景及其原理 掌握MapReduce和YARN功能与架构 熟悉YARN的新特性 MapReduce的概述 MapReduce基于Google发布的MapReduce论文设计开发,用于大规模数据集(大于1TB)的并行计算 具有如下特点: 易于编程:程序员仅需描述做什么,具体怎么做交由系统的执行框架处理. 良好的扩展性:可通过添加节点以扩展集群能力. 高容错性:通过计算迁移或数据迁移…
文章目录 1.Yarn介绍 2.Yarn架构 2.1 .ResourceManager 2.2 .ApplicationMaster 2.3 .NodeManager 2.4 .Container 2.5 .Resource Request 及 Container 2.6 .JobHistoryServer 2.7.Timeline Server 3.yarn应用运行原理 3.1.yarn应用提交过程 3.2.mapreduce on yarn 4. yarn使用 4.1 .配置文件 4.2.…
1. 概述 YARN 是一个资源调度平台,负责为运算程序提供服务器运算资源: YARN 由ResourceManager,NodeManager, ApplicationMaster 和 Container 等组件构成: 2. YARN 工作机制 2.1 资源调度器 Hadoop 作业调度器主要有三种:FIFO,Capacity Scheduler 和 Fair Scheduler: Hadoop 默认的资源调度器是 Capacity Scheduler;…
摘要:Yarn的出现伴随着Hadoop的发展,使Hadoop从一个单一的大数据计算引擎,成为大数据的代名词. 本文分享自华为云社区<Yarn为何能坐实资源调度框架之王?>,作者: JavaEdge. Hadoop主要组成: 分布式文件系统HDFS 分布式计算框架MapReduce 分布式集群资源调度框架Yarn Yarn的出现伴随着Hadoop的发展,使Hadoop从一个单一的大数据计算引擎,成为一个集存储.计算.资源管理为一体的完整大数据平台,进而发展出自己的生态体系,成为大数据的代名词.…
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…