Python中识别DataFrame中的nan】的更多相关文章

# 识别python中DataFrame中的nanfor i in pfsj.index: if type(pfsj.loc[i]['WZML']) == float: print('float value is ${}'.format(pfsj.loc[i]['WZML'])) elif type(pfsj.loc[i]['WZML']) == str: print('str value is ${}'.format(pfsj.loc[i]['WZML'])) 结果: # 根据结果可知在Dat…
pandas中的DataFrame中的空数据处理方法: 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列索引加上布尔值)• isnull方法 • 查看行:df.isnull().any(axis=1)  • 查看列:df.isnull().any(axis=0)• notnull方法:• 查看行:df.notnull().all(axis=1)• 查看列:df.notnull().all(axis=0…
[Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json("people.json") peopleRDD = peopleDF.map(lambda row: (row.pcode,row.name)) peopleRDD.take(5) Out[5]: [(u'94304', u'Alice'),(u'94304', u'…
[Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json("people.json") peopleDF.limit(3).show() === [training@localhost ~]$ hdfs dfs -cat people.json{"name":"Alice","pcode":…
如图:busy=0 or 1,求出busy=1时los的平均,同样对busy=0时也求出los的平均 Python dataframe中如何使y列按x列进行统计? >> python这个答案描述的挺清楚的:http://www.goodpm.net/postreply/python/1010000008981394/Pythondataframe中如何使y列按x列进行统计.html…
nan:not a number inf:infinity;正无穷 numpy中的nan和inf都是float类型     t!=t 返回bool类型的数组(矩阵) np.count_nonzero() 返回的是数组中的非0元素个数:true的个数. np.isnan() 返回bool类型的数组. 那么问题来了,在一组数据中单纯的把nan替换为0,合适么?会带来什么样的影响? 比如,全部替换为0后,替换之前的平均值如果大于0,替换之后的均值肯定会变小,所以更一般的方式是把缺失的数值替换为均值(中…
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看熊猫文档,但没有立即找到答案.   要选择列值等于标量some​​_value的行,请使用==: df.loc[df['column_name'] == some_value] 要选择其列值在可迭代值some_values中的行,请使用isin: df.loc[df['column_name'].i…
转自:http://blog.csdn.net/u011089523/article/details/60341016 用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd…
用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S…
如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始了Kaggle比赛,最近还赢得了几个比赛. 要在Kaggle比赛中取得好成绩不仅仅是要求知道一些机器学习算法,而且要有一个准确的思维模式,好学,花大量的时间探索数据.虽然,在很多方面通常都不强调在开始Kaggle比赛的时候使用教程(tutorials),但是在这里,我将告诉大家如何开始Kaggle…