LLE局部线性嵌入算法】的更多相关文章

非线性降维 流形学习 算法思想有些类似于NLM,但是是进行的降维操作. [转载自] 局部线性嵌入(LLE)原理总结 - yukgwy60648的博客 - CSDN博客 https://blog.csdn.net/yukgwy60648/article/details/54578141 LLE局部线性嵌入算法 - Eleven-Seven工作小空间 - CSDN博客 https://blog.csdn.net/xiaozhouchou/article/details/51866685…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
% SLLE ALGORITHM (using K nearest neighbors) % % [Y] = lle(X,K,dmax,a) % % X = data as D x N matrix (D = dimensionality, N = #points) % K = number of neighbors % dmax = max embedding dimensionality % Y = embedding as dmax x N matrix % a=增量因子 %%%%%%%%…
局部线性嵌入(Locally Linear Embedding,以下简称LLE)也是非常重要的降维方法.和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域.下面我们就对LLE的原理做一个总结. 1. 流形学习概述 LLE属于流形学习(Manifold Learning)的一种.因此我们首先看看什么是流形学习.流形学习是一大类基于流形的框架.数学意义上的流形比较抽象,不…
在局部线性嵌入(LLE)原理总结中,我们对流形学习中的局部线性嵌入(LLE)算法做了原理总结.这里我们就对scikit-learn中流形学习的一些算法做一个介绍,并着重对其中LLE算法的使用方法做一个实践上的总结. 1. scikit-learn流形学习库概述 在scikit-learn中,流形学习库在sklearn.manifold包中.里面实现的流形学习算法有: 1)多维尺度变换MDS算法:这个对应的类是MDS.MDS算法希望在降维时在高维里样本之间的欧式距离关系在低维可以得到保留.由于降维…
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data(): ''' 加载用于降维的数据 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.load_iris() return iris.data,iris.target #局部线性嵌入LLE降维模型 d…
DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner DWA算法第一次提出应该是1997年,发在了<IEEE Robotics and Automation Magazines>上 路径规划算法主要包括全局路径规划和局部路径规划.局部路径规划主要用于动态环境下的导航和避障,对于无法预测的障碍物DWA算法可以较好地解决.DWA算法的优点是计算负复杂度较低,由于考虑到速度和加速度的…
C++泛型线性查找算法--find <泛型编程和STL>笔记及思考. 线性查找可能是最为简单的一类查找算法了.他所作用的数据结构为一维线性的空间.这篇文章主要介绍使用 C++ 实现泛型算法 find的过程. C 版本 首先介绍 C find 算法的实现,用以引入 C++ 版本. char *find1(char *first,char *last,int c) { while(first != last && *first != c) ++first; return first…
BFPRT算法的作者是5位真正的大牛(Blum . Floyd . Pratt . Rivest . Tarjan). BFPRT解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度. 步骤 将n个元素每 5 个一组,分成n/5(上界)组. 取出每一组的中位数,任意排序方法,比如插入排序. 递归的调用 selection 算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个. 用x…
简要介绍下快速排序的思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列.时间复杂度为O(nlogn) 一.<data structure and algorithm analysis in c>中的实现,测试过,觉得该说明的已经注释  C++ Code  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18…