首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
TensorFlow中的卷积函数
】的更多相关文章
TensorFlow中的卷积函数
前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性. 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可以看到最终调的TensorFlow接口是convolution,这个地方就进入C++层面了,暂时不涉及.先来看看这个convolution函数,官方定义是这样的: tf.nn.convolution( input, filter, padding, strides=None, dilation_ra…
TensorFlow 中的卷积网络
TensorFlow 中的卷积网络 是时候看一下 TensorFlow 中的卷积神经网络的例子了. 网络的结构跟经典的 CNNs 结构一样,是卷积层,最大池化层和全链接层的混合. 这里你看到的代码与你在 TensorFlow 深度神经网络的代码类似,我们按 CNN 重新组织了结构. 如那一节一样,这里你将会学习如何分解一行一行的代码.你还可以下载代码自己运行. 感谢 Aymeric Damien 提供了这节课的原始 TensorFlow 模型. 现在开看下! 数据集 你从之前的课程中见过这节课的…
【tensorflow基础】tensorflow中 tf.reduce_mean函数
参考 1. tensorflow中 tf.reduce_mean函数: 完…
tensorflow中的卷积和池化层(一)
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁.方便,这其实完全类似于Caffe的python接口,但是由于框架底层的实现不一样,tf无论是在单机还是分布式设备上的实现效率都受到一致认可. CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数是什么?具体的tutorial地址参见Tensorflow中文社区. 卷积(Convolution)…
Tensorflow中的run()函数
1 run()函数存在的意义 run()函数可以让代码变得更加简洁,在搭建神经网络(一)中,经历了数据集准备.前向传播过程设计.损失函数及反向传播过程设计等三个过程,形成计算网络,再通过会话tf.Session().run()进行循环优化网络参数.这样可以使得代码变得更加简洁,可以集中处理多个图和会话,明确调用tf.Session().run()可能是一种更加直观的方法. 总而言之,我们先规划好计算图,再编写代码,之后调用tf.Session.run().简洁高效. 在实际代码中,一般写成下种形…
【转载】 tf.Print() (------------ tensorflow中的print函数)
原文地址: https://blog.csdn.net/weixin_36670529/article/details/100191674 ---------------------------------------------------------------------------------------------- 调试程序的时候,经常会需要检查中间的参数,这些参数一般是定义在model或是别的函数中的局部参数,由于tensorflow要求先构建计算图再运算的机制,也不能定义后直接p…
tensorflow中 tf.reduce_mean函数
tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值. reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None) 第一个参数input_tensor: 输入的待降维的tensor; 第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值; 第三个参数keep_d…
对于tensorflow中的gradient_override_map函数的理解
# #############添加############## def binarize(self, x): """ Clip and binarize tensor using the straight through estimator (STE) for the gradient. """ g = tf.get_default_graph() with ops.name_scope("Binarized") as nam…
卷积运算的本质,以tensorflow中VALID卷积方式为例。
卷积运算在数学上是做矩阵点积,这样可以调整每个像素上的BGR值或HSV值来形成不同的特征.从代码上看,每次卷积核扫描完一个通道是做了一次四重循环.下面以VALID卷积方式为例进行解释. 下面是python的代码: def convolve(dateMat,kernel): m,n = dateMat.shape km,kn = kernel.shape newMat = np.ones(((m - km + 1),(n - kn + 1))) tempMat = np.ones(((km),(k…
Tensorflow中的transpose函数解析
transpose函数作用是对矩阵进行转换操作 相信说完上面这一句,大家和我一样都是懵逼状态,完全不知道是怎么回事,那么接下来和我一起探讨吧 1.二维数组 x = [[1,3,5], [2,4,6]] 二维数组为2行3列的矩阵 对于二维数组,perm=[0,1],0代表二维数组的行,1代表二维数组的列 tf.transpose(x, perm=[1, 0]),结果为[[1,2], perm[1,0]代表将数组的行和列进行交换,代表矩阵的转置,转置之后为3行2列 [3,4], […