关于模板什么的还有算法的具体介绍 戳我 这里我们只做所有最短路的具体分析. 那么同是求解最短路,这些算法到底有什么区别和联系: 对于BFS来说,他没有松弛操作,他的理论思想是从每一点做树形便利,那么时间复杂度绝对是在大型图中难以接受的,所以BFS题目设计很精巧,数据限制,更重要的是他可以处理一些条件很麻烦的联通情况,比如在途中,每步长相同求到达某一地的时间,那么我们要用最短路,就需要建图,但是借助BFS就不需要建图,这么麻烦的事情了. 对于其他最短路,核心思想是松弛,那么先说Floyd,其核心思…
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可以求得一点到任意一点经过一条边的最短路,遍历两次可以求得一点到任意一点经过两条边的最短路...如 此反复,当遍历m次所有边后,则可以求得一点到任意一点经过m条边后的最短路(有点类似离散数学中邻接矩阵的连通性判定) POJ1556-The Doors 初学就先看POJ2240吧 题意:求从(0,5)到…
最短路问题(Bellman/Dijkstra/Floyd) 寒假了,继续学习停滞了许久的算法.接着从图论开始看起,之前觉得超级难的最短路问题,经过两天的苦读,终于算是有所收获.把自己的理解记录下来,可以加深印象,并且以后再忘了的时候可以再看.最短路问题在程序竞赛中是经常出现的内容,解决单源最短路经问题的有bellman-ford和dijkstra两种算法,其中,dijikstra算法是对bellman的改进.解决任意两点间的最短路有Floyd-warshall算法. 单源最短路1(bellman…
Dijkstra算法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边. 问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径.(单源最短路径) 算法的基本思想是:每…
题目链接 http://poj.org/problem?id=1847 题意 有n个车站,编号1~n,每个车站有k个出口,车站的出口默认是k个出口中的第一个,如果不想从默认出口出站,则需要手动选择出站口.现在从车站a出发,求最少需要手动选择几次出站口才能到车站b. 思路 这题的图中没有显式给出结点之间的距离,但可以根据题意给路径添加距离,比如测试数据中的“2 2 3”表示从第1个车站默认开往第2个车站,想要开到第3个车站则需手动选择,所以我们可以令结点1到结点2的边权值为0(默认车站),结点1到…
Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 7990 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe…
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运…
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能更新点的权值,则说明有负环的存在. #include <stdio.h> #include <string.h> #define min(a,b) (a)<(b)?(a):(b) const int N = 10005; const int INF = 0x3f3f3f3f; i…
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gray; bord…
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段:       (1)初始化:将除源点…