Python中随机森林的实现与解释】的更多相关文章

使用像Scikit-Learn这样的库,现在很容易在Python中实现数百种机器学习算法.这很容易,我们通常不需要任何关于模型如何工作的潜在知识来使用它.虽然不需要了解所有细节,但了解机器学习模型是如何工作的仍然有用.这使我们可以在模型表现不佳时进行诊断,或者解释模型如何做出决策,如果我们想让别人相信我们的模型,这是至关重要的. 在本文中,我们将介绍如何在Python中构建和使用Random Forest.除了查看代码之外,我们还将尝试了解此模型的工作原理.因为由许多决策树组成的随机森林,我们首…
用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态). 随机森林算法(Random forest algorithm)是对 bagging 算法的扩展.除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做…
Python中 sys.argv[]的用法简明解释 因为是看书自学的python,开始后不久就遇到了这个引入的模块函数,且一直在IDLE上编辑了后运行,试图从结果发现它的用途,然而结果一直都是没结果,也在网上查了许多,但发现这个问题的比较详细的解释只有一个版本,大部分都是转裁和复制的.给的都是简明python教程上那个一长串代码的例子,说看了就明白了,可我看得晕头转向的还是没真正明白,只知道“sys.argv[0]表示代码本身文件路径”这点,其实还是不明其意.后来经过大量努力,多方求教才真正明悟…
Python中 sys.argv[]的用法简明解释 sys.argv[]说白了就是一个从程序外部获取参数的桥梁,这个“外部”很关键,所以那些试图从代码来说明它作用的解释一直没看明白.因为我们从外部取得的参数可以是多个,所以获得的是一个列表(list),也就是说sys.argv其实可以看作是一个列表,所以才能用[]提取其中的元素.其第一个元素是程序本身,随后才依次是外部给予的参数. 下面我们通过一个极简单的test.py程序的运行结果来说明它的用法. 1 #test.py 2 3 import s…
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on…
一:sklearn中决策树的参数: 1,criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来选择最合适的节点. 2,splitter: ”best” or “random”(default=”best”)随机选择属性还是选择不纯度最大的属性,建议用默认. 3,max_features: 选择最适属性时划分的特征不能超过此值. 当为整数时,即最大特征数:当为小数时,训练集特征数*小数: if…
一.一般的模型调参原则 1.调参前提:模型调参其实是没有定论,需要根据不同的数据集和不同的模型去调.但是有一些调参的思想是有规律可循的,首先我们可以知道,模型不准确只有两种情况:一是过拟合,而是欠拟合.过拟合是指模型过于复杂,欠拟合是指模型过于简单. 2.查找资料:调参时应该知道每一个参数的默认值是多少,其增大或者减小会使模型更加复杂还是更加简单. 3.调参可以使用两种方法:1.学习曲线 2.网格搜索 学习曲线只能对参数一个一个进行调整,可以观察参数的增大或者减小具体对模型产生怎样的影响:网格搜…
在某些情况下,我们需要对列表进行某些操作,例如对列表中的每一个元素都乘以2,这样一般来说就是遍历每个元素在乘以2.那么写下来就得两行了.而且这会修改原来的列表,如果要求不能修改原来的列表,又得多一行了. mylist = [1,3,5,7] copylist = [] for i in mylist: copylist.append(i * 2) print(copylist) 一眼看上去就是臃肿二字. Python提供了更加简便的写法: mylist = [1,3,5,7] copylist…
代码实现: # -*- coding: utf-8 -*- """ Created on Tue Sep 4 09:38:57 2018 @author: zhen """ from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accur…
sys.argv[]就是一个从程序外部获取参数的桥梁,这个“外部”很关键.因为我们从外部取得的参数可以是多个,所以获得的是一个列表(list),也就是说sys.argv其实可以看作是一个列表,所以才能用[]提取其中的元素.其第一个元素是程序本身,随后才依次是外部给予的参数. 下面我们通过一个极简单的test.py程序的运行结果来说明它的用法. 1 #test.py 2 3 import sys 4 a=sys.argv[0] 5 print(a) 将test.py保存在c盘的根目录下. 在程序中…