题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^n\sum_{j|i,j|n}\mu(j)i^d=\sum_{j|n}\mu(j)\sum_{i=1}^{\frac{n}{j}}(ij)^d=\sum_{j|n}\mu(j)j^d\sum_{i=1}^{\frac{n}{j}}i^d$ 那么最后面这个东西就是个自然数幂求和了 在这篇关于斯特林数的…
题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const ll mod = 1000000007; ll a[110][110] , p[1010] , v[1010]; ll pow(ll x , ll…
http://www.cnblogs.com/jianglangcaijin/p/4033399.html ——lych_cys 我还是太菜了,考虑一个函数的值得时候,首先考虑是否积性函数,不行的话就强行展开, 如果是的话考虑最小因子的高次幂的情况 然后还要一点点猜想才行. #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #…
传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i=1}^N i^d \sum\limits_{p \mid gcd(i,n)} \mu(p) \\ &= \sum\limits_{p|n} \mu(p) p^d \sum\limits_{i=1}^{\frac{n}{p}} i^d\end{align*}\) 然后就不会做了qwq,后面的自然数次幂…
题目大意 这是一道通信题. 给你 \(8\) 个 \(32\) 位整数.加密端要把这些数加密成至少 \(1000\) 个 \(32\) 位整数,交互库会把这些整数随机打乱后发给解密端,解密端最多能获得其中 \(lim\) 个的值,解密端要按顺序给出这 \(8\) 个整数. 交互库会测试 \(100\) 次. 对于 \(lim\geq 50\) 的测试点,要求 \(100\%\) 的正确率. 对于 \(lim\geq 20\) 的测试点,要求 \(90\%\) 的正确率. 对于 \(lim\geq…
传送门 题意: 统计\(k\)元组个数\((a_1,a_2,\cdots,a_n),1\leq a_i\leq n\)使得\(gcd(a_1,a_2,\cdots,a_k,n)=1\). 定义\(f(n,k)\)为满足要求的\(k\)元组个数,现在要求出\(\sum_{i=1}^n f(i,k),1\leq n\leq 10^9,1\leq k\leq 1000\). 思路: 首先来化简一下式子,题目要求的就是: \[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1…
[BZOJ3601]一个人的数论 题解:本题的做法还是很神的~ 那么g(n)如何求呢?显然它的常数项=0,我们可以用待定系数法,将n=1...d+1的情况代入式子中解方程,有d+1个方程和d+1个未知数,直接高斯消元解出ai即可. #include <cstdio> #include <cstring> #include <iostream> using namespace std; typedef long long ll; const ll P=1000000007…
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d\) \(=\sum_{k=1}^{n}k^d\sum_{e|n,e|k}\mu(e)\) \(=\sum_{e|n}\sum_{k=1}^{n/e}(ek)^d\mu(e)\) \(=\sum_{e|n}e^d\mu(e)\sum_{k=1}^{n/e}k^d\) 我们假装(反正就是可以但是我太弱…
题目链接 BZOJ3601 题解 挺神的 首先有 \[ \begin{aligned} f(n) &= \sum\limits_{x = 1}^{n} x^{d} [(x,n) = 1] \\ &= \sum\limits_{x = 1}^{n} x^{d} \sum\limits_{c|(x,n)}\mu(c) \\ &= \sum\limits_{c|n}\sum\limits_{x = 1}^{\frac{n}{c}} (cx)^{d} \mu(c) \\ &= \s…
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &= \sum_{i = 1}^n [{\rm gcd}(i, n) = 1]i^d \\ &= \sum_{i = 1}^n i^d \sum_{k | i, k | n}\mu(k) \\ &= \sum_{k | n} \mu(k) \sum_{k | i} i^d \\ &…